六亲不认是什么生肖| 藿香是什么| 聚酯纤维是什么材料| 4.11是什么星座| 催产素是什么| 6月13日什么星座| 吃什么可以壮阳| 彩虹代表什么生肖| 尿检白细胞弱阳性是什么意思| 冰山一角是什么生肖| 甚嚣尘上是什么意思| 糙米饭是什么米| 喉咙痒是什么原因引起的| 唱过什么歌| 总是睡不着觉是什么原因| 三门代表什么生肖| 老是想吐是什么原因| 为什么医生很少开阿斯美| 两肺间质性改变是什么意思| 腿软无力是什么原因| 端午节晚上吃什么| metoo是什么意思| 梦见小老鼠是什么征兆| 开车压到猫有什么预兆| 气血两亏是什么意思| 口力念什么| 699是什么意思| 蛇盘疮吃什么药好得快| 为什么手上会起小水泡| 痈是什么意思| 多吃蓝莓有什么好处| 什么耳什么聋| 回民为什么不能吃猪肉| 完犊子是什么意思| 上海龙华医院擅长什么| 几成是什么意思| 眼睛做激光手术有什么后遗症| 地藏菩萨是管什么的| 月经老提前是什么原因| 脚趾长痣代表什么意思| 头汗特别多是什么原因| 放屁多是什么原因引起的| 左眼皮跳什么意思| 为什么孩子要跟爸爸姓| 面试要带什么| 提手旁的字与什么有关| 鼻子流血是什么原因| 口干口臭什么原因引起的| 癣用什么药膏| 大腿内侧发黑是什么原因| 公元500年是什么朝代| 得水痘不能吃什么| 检查肺部挂什么科室| 炭疽病用什么农药最好| 闲是什么生肖| 16是什么生肖| 没睡好头疼是什么原因| 自食其力是什么意思| 彩色的什么| 一个兹一个子念什么| 香港警司是什么级别| 三妻四妾是什么意思| 伤食是什么意思| 肝多发囊肿是什么意思| 声带小结是什么意思| 九一年属什么生肖| 移植后需要注意什么| 为什么总是拉肚子| 间接胆红素高说明什么| 游泳前一定要做好什么运动| 皮下囊肿是什么原因引起的| 开车压到猫有什么预兆| 7.14是什么日子| 抗糖是什么意思| 责任是什么生肖| 阴茎皮开裂是什么原因| 为什么特别招蚊子| 篮子是什么意思| 马拉色菌是什么| 吉祥是什么意思| 晚上11点多是什么时辰| 奶泡是什么| 砷对人体有什么危害| 立棍是什么意思| 给男生送什么礼物好| 总蛋白偏高有什么危害| 打呼噜吃什么| 多囊卵巢有什么症状表现| 小肚子胀疼是什么原因| 内秀是什么意思| x58主板配什么cpu| 戴尾戒是什么意思| 得不偿失是什么意思| 樱桃是什么季节的水果| 内衣34是什么码| 孕妇鼻炎犯了可以用什么药治疗| 公安局局长什么级别| 凌晨2点是什么时辰| 今年为什么有两个6月| 91视频是什么| 澳大利亚位于什么板块| 血压高吃什么菜和水果能降血压| 总胆固醇高有什么危害| 阿胶不能和什么一起吃| 新陈代谢慢吃什么药| 果胶是什么| 大枣吃多了有什么危害| 孕酮低是什么意思| 6月6是什么星座| 砚台是什么| 甲醛什么味道| 益气是什么意思| 阿姨是什么意思| 皮草是什么意思| 中老年补钙吃什么钙片好| 鱼跃龙门是什么意思| 长脸适合什么发型女| 左手麻木是什么原因引起的| 疫苗是什么| 水煮鱼片用什么鱼| 梦到涨大水预示着什么| 绿茶属于什么茶| 什么的哭| 江西有什么特产| 什么叫做| 晚上入睡困难是什么原因| 女人梦见仇人代表什么| 精液发红是什么原因| 梦见吃西红柿是什么意思| 什么叫腰肌劳损| 高送转是什么意思| 慎独是什么意思| 叶公好龙讽刺了什么| 科技馆里面有什么| 炖鸡块放什么调料| 中药一般什么时候喝最好| 甲状腺回声不均匀什么意思| 肚子痛吃什么药好| 天天想睡觉没精神是什么原因| ala是什么| 什么果酒最好喝| 微信加入黑名单和删除有什么区别| 甲方乙方是什么意思| 茴香是什么| 白带正常是什么颜色| 他说风雨中这点痛算什么| 元帅相当于现在什么官| 小孩肚子疼吃什么药| 常吃南瓜有什么好处和坏处| 14年婚姻是什么婚| 为什么不要看电焊火花| 什么的身子| 什么是基数| 熟地有什么功效| 84年什么命| 小壁虎进家有什么预兆| 骨髓抑制是什么意思| 太阳是一颗什么星| e-mail什么意思| 随喜是什么意思| 忠实是什么意思| 奔三是什么意思| 宁的五行属性是什么| 尊字五行属什么| 本命年为什么要穿红色| o型血的孩子父母是什么血型| 胸口正中间疼是什么病| 邵字五行属什么| 双鱼座女和什么星座最配| 1月26日是什么星座| 唾液酸偏低意味什么| 前羽念什么| 手心发热是什么原因引起的| 姨妈期吃什么水果| 缓刑是什么意思还要坐牢吗| 乙醇对人体有什么伤害| 痔疮发痒是什么原因| 天神是什么意思| 绰号是什么意思| 胸闷气短是什么原因引起的| p波高尖代表什么| 嗯呢什么意思| 京酱肉丝用什么酱| 世界上最长的单词是什么| 痛风病人吃什么菜| 起早贪黑是什么生肖| 势不可挡是什么意思| 满族八大碗都有什么菜| 河蟹吃什么| 脚底发烫是什么原因| 吃什么能安神助睡眠| 小腿怕冷是什么原因| 什么时候泡脚效果最好| 什么是辟谷| 罗马棉是什么面料| 肝囊肿是什么病| 筒骨炖什么好吃| 喉咙有浓痰是什么原因| kimi是什么意思| 阑尾炎手术后可以吃什么| 肛门长期瘙痒是什么原因| 鬼怕什么| 什么是热伤风| 叶公好龙告诉我们什么道理| 肺气肿吃什么药| 女性雄激素过高是什么原因引起的| 有龙则灵的灵是什么意思| 血糖高吃什么降得快| 豁达是什么意思| 巴扎是什么意思| 追随是什么意思| 裸车是什么意思| 猫咖是什么| 陈旧性心梗是什么意思| 阿修罗道是什么意思| 没落是什么意思| 不排大便是什么原因| 阴茎硬度不够吃什么药| 氯中毒吃什么可以解毒| 什么茶减肥效果好| 基点是什么意思| 鼻涕带血是什么原因引起的| 北边是什么生肖| 扁桃体发炎吃什么好得快| 邂逅什么意思| 温水煮青蛙什么意思| 宫内孕和宫外孕有什么区别| 农历六月六日是什么节日| 车票改签是什么意思| 兔子吃什么| 吃什么水果容易减肥| 焦亚硫酸钠是什么| 水痘疫苗叫什么| 冰箱什么品牌好| 天天喝绿茶有什么好处和坏处| 吃榴莲对身体有什么好处| 同房痛什么原因引起的| 脖子为什么有颈纹| 嫦娥住的宫殿叫什么| 十月份出生的是什么星座| 18k金是什么意思| 什么茶可以减肥消脂| 内分泌代谢科是看什么病的| 微量泵是干什么用的| hyq什么意思| 姘头是什么意思| 名不见经传是什么意思| 骨骼肌是什么意思| 谷草转氨酶偏高是什么意思| 哺乳期牙龈肿痛可以吃什么药| 菠菜不能和什么食物一起吃| 人总放屁是什么原因| 鸾凤是什么意思| 肺纹理增粗是什么意思| 心宽是什么意思| 7月24日什么星座| 脂溢性皮炎用什么药| 蟑螂的天敌是什么| 蕾丝边是指什么意思| 什么故事| 女孩和女人有什么区别| 为什么锻炼后体重反而增加了| 束手无策是什么意思| 老年性脑改变是什么意思| 百度Jump to content

河南开铺农村“信息高速公路”:村村将有免费WIFI

From Wikipedia, the free encyclopedia
OFET-based flexible display
Organic CMOS logic circuit. Total thickness is less than 3?μm. Scale bar: 25 mm
百度   在强化一线监管的同时,上交所也十分重视规范自律监管程序,通过听证、复核等机制加强对监管对象合法权益保护。

An organic field-effect transistor (OFET) is a field-effect transistor using an organic semiconductor in its channel. OFETs can be prepared either by vacuum evaporation of small molecules, by solution-casting of polymers or small molecules, or by mechanical transfer of a peeled single-crystalline organic layer onto a substrate. These devices have been developed to realize low-cost, large-area electronic products and biodegradable electronics. OFETs have been fabricated with various device geometries. The most commonly used device geometry is bottom gate with top drain and source electrodes, because this geometry is similar to the thin-film silicon transistor (TFT) using thermally grown SiO2 as gate dielectric. Organic polymers, such as poly(methyl-methacrylate) (PMMA), can also be used as dielectric.[1] One of the benefits of OFETs, especially compared with inorganic TFTs, is their unprecedented physical flexibility,[2] which leads to biocompatible applications, for instance in the future health care industry of personalized biomedicines and bioelectronics.[3]

In May 2007, Sony reported the first full-color, video-rate, flexible, all plastic display,[4][5] in which both the thin-film transistors and the light-emitting pixels were made of organic materials.

History

[edit]

The concept of a field-effect transistor (FET) was first proposed by Julius Edgar Lilienfeld, who received a patent for his idea in 1930.[6] He proposed that a field-effect transistor behaves as a capacitor with a conducting channel between a source and a drain electrode. Applied voltage on the gate electrode controls the amount of charge carriers flowing through the system.

The first insulated-gate field-effect transistor was designed and prepared by Frosch and Derrick in 1957, using masking and predeposition, were able to manufacture silicon dioxide transistors and showed that silicon dioxide insulated, protected silicon wafers and prevented dopants from diffusing into the wafer.[7][8] Later, following this research, Mohamed Atalla and Dawon Kahng proposed a silicon MOS transistor in 1959[9] and successfully demonstrated a working MOS device with their Bell Labs team in 1960.[10][11] Their team included E. E. LaBate and E. I. Povilonis who fabricated the device; M. O. Thurston, L. A. D’Asaro, and J. R. Ligenza who developed the diffusion processes, and H. K. Gummel and R. Lindner who characterized the device.[12][13] Also known as the MOS transistor, the MOSFET is the most widely manufactured device in the world.[14][15]

The concept of a thin-film transistor (TFT) was first proposed by John Wallmark who in 1957 filed a patent for a thin film MOSFET in which germanium monoxide was used as a gate dielectric. Thin-film transistor was developed in 1962 by Paul K. Weimer who implemented Wallmark's ideas.[16] The TFT is a special type of MOSFET.[17]

Rising costs of materials and manufacturing,[citation needed] as well as public interest in more environmentally friendly electronics materials, have supported development of organic based electronics in more recent years. In 1986, Mitsubishi Electric researchers H. Koezuka, A. Tsumura and Tsuneya Ando reported the first organic field-effect transistor,[18][19] based on a polymer of thiophene molecules.[20] The thiophene polymer is a type of conjugated polymer that is able to conduct charge, eliminating the need to use expensive metal oxide semiconductors. Additionally, other conjugated polymers have been shown to have semiconducting properties. OFET design has also improved in the past few decades. Many OFETs are now designed based on the thin-film transistor (TFT) model, which allows the devices to use less conductive materials in their design. Improvement on these models in the past few years have been made to field-effect mobility and on–off current ratios.

Materials

[edit]

One common feature of OFET materials is the inclusion of an aromatic or otherwise conjugated π-electron system, facilitating the delocalization of orbital wavefunctions. Electron withdrawing groups or donating groups can be attached that facilitate hole or electron transport.

OFETs employing many aromatic and conjugated materials as the active semiconducting layer have been reported, including small molecules such as rubrene, tetracene, pentacene, diindenoperylene, perylenediimides, tetracyanoquinodimethane (TCNQ), and polymers such as polythiophenes (especially poly(3-hexylthiophene) (P3HT)), polyfluorene, polydiacetylene, poly(2,5-thienylene vinylene), poly(p-phenylene vinylene) (PPV).

The field is very active, with newly synthesized and tested compounds reported weekly in prominent research journals. Many review articles exist documenting the development of these materials.[21][22][23][24][25]

Rubrene-based OFETs show the highest carrier mobility 20–40 cm2/(V·s). Another popular OFET material is pentacene, which has been used since the 1980s, but with mobilities 10 to 100 times lower (depending on the substrate) than rubrene.[25] The major problem with pentacene, as well as many other organic conductors, is its rapid oxidation in air to form pentacene-quinone. However if the pentacene is preoxidized, and the thus formed pentacene-quinone is used as the gate insulator, then the mobility can approach the rubrene values. This pentacene oxidation technique is akin to the silicon oxidation used in the silicon electronics.[21]

Polycrystalline tetrathiafulvalene and its analogues result in mobilities in the range 0.1–1.4 cm2/(V·s). However, the mobility exceeds 10 cm2/(V·s) in solution-grown or vapor-transport-grown single crystalline hexamethylene-tetrathiafulvalene (HMTTF). The ON/OFF voltage is different for devices grown by those two techniques, presumably due to the higher processing temperatures using in the vapor transport grows.[21]

All the above-mentioned devices are based on p-type conductivity. N-type OFETs are yet poorly developed. They are usually based on perylenediimides or fullerenes or their derivatives, and show electron mobilities below 2 cm2/(V·s).[22]

Device design of organic field-effect transistors

[edit]

Three essential components of field-effect transistors are the source, the drain and the gate. Field-effect transistors usually operate as a capacitor. They are composed of two plates. One plate works as a conducting channel between two ohmic contacts, which are called the source and the drain contacts. The other plate works to control the charge induced into the channel, and it is called the gate. The direction of the movement of the carriers in the channel is from the source to the drain. Hence the relationship between these three components is that the gate controls the carrier movement from the source to the drain.[26]

When this capacitor concept is applied to the device design, various devices can be built up based on the difference in the controller – i.e. the gate. This can be the gate material, the location of the gate with respect to the channel, how the gate is isolated from the channel, and what type of carrier is induced by the gate voltage into channel (such as electrons in an n-channel device, holes in a p-channel device, and both electrons and holes in a double injection device).

Figure 1. Schematic of three kinds of field-effect transistor (FET): (a) metal-insulator-semiconductor FET (MISFET); (b) metal-semiconductor FET (MESFET); (c) thin-film transistor (TFT).

Classified by the properties of the carrier, three types of FETs are shown schematically in Figure 1.[27] They are MOSFET (metal–oxide–semiconductor field-effect transistor), MESFET (metal–semiconductor field-effect transistor) and TFT (thin-film transistor).

MOSFET

[edit]

The most prominent and widely used FET in modern microelectronics is the MOSFET (metal–oxide–semiconductor FET). There are different kinds in this category, such as MISFET (metal–insulator–semiconductor field-effect transistor), and IGFET (insulated-gate FET). A schematic of a MISFET is shown in Figure 1a. The source and the drain are connected by a semiconductor and the gate is separated from the channel by a layer of insulator. If there is no bias (potential difference) applied on the gate, the Band bending is induced due to the energy difference of metal conducting band and the semiconductor Fermi level. Therefore, a higher concentration of holes is formed on the interface of the semiconductor and the insulator. When an enough positive bias is applied on the gate contact, the bended band becomes flat. If a larger positive bias is applied, the band bending in the opposite direction occurs and the region close to the insulator-semiconductor interface becomes depleted of holes. Then the depleted region is formed. At an even larger positive bias, the band bending becomes so large that the Fermi level at the interface of the semiconductor and the insulator becomes closer to the bottom of the conduction band than to the top of the valence band, therefore, it forms an inversion layer of electrons, providing the conducting channel. Finally, it turns the device on.[28]

MESFET

[edit]

The second type of device is described in Fig.1b. The only difference of this one from the MISFET is that the n-type source and drain are connected by an n-type region. In this case, the depletion region extends all over the n-type channel at zero gate voltage in a normally “off” device (it is similar to the larger positive bias in MISFET case). In the normally “on” device, a portion of the channel is not depleted, and thus leads to passage of a current at zero gate voltage.

TFT

[edit]

A thin-film transistor (TFT) is illustrated in Figure 1c. Here the source and drain electrodes are directly deposited onto the conducting channel (a thin layer of semiconductor) then a thin film of insulator is deposited between the semiconductor and the metal gate contact. This structure suggests that there is no depletion region to separate the device from the substrate. If there is zero bias, the electrons are expelled from the surface due to the Fermi-level energy difference of the semiconductor and the metal. This leads to band bending of semiconductor. In this case, there is no carrier movement between the source and drain. When the positive charge is applied, the accumulation of electrons on the interface leads to the bending of the semiconductor in an opposite way and leads to the lowering of the conduction band with regards to the Fermi-level of the semiconductor. Then a highly conductive channel forms at the interface (shown in Figure 2).

Figure 2: Schematic of band-bending in the TFT device model.

OFET

[edit]

OFETs adopt the architecture of TFT. With the development of the conducting polymer, the semiconducting properties of small conjugated molecules have been recognized. The interest in OFETs has grown enormously in the past ten years. The reasons for this surge of interest are manifold. The performance of OFETs, which can compete with that of amorphous silicon (a-Si) TFTs with field-effect mobilities of 0.5–1 cm2 V?1 s?1 and ON/OFF current ratios (which indicate the ability of the device to shut down) of 106–108, has improved significantly. Currently, thin-film OFET mobility values of 5 cm2 V?1 s?1 in the case of vacuum-deposited small molecules[29] and 0.6 cm2 V?1 s?1 for solution-processed polymers[30] have been reported. As a result, there is now a greater industrial interest in using OFETs for applications that are currently incompatible with the use of a-Si or other inorganic transistor technologies. One of their main technological attractions is that all the layers of an OFET can be deposited and patterned at room temperature by a combination of low-cost solution-processing and direct-write printing, which makes them ideally suited for realization of low-cost, large-area electronic functions on flexible substrates.[31]

Device preparation

[edit]
OFET schematic

Thermally oxidized silicon is a traditional substrate for OFETs where the silicon dioxide serves as the gate insulator. The active FET layer is usually deposited onto this substrate using either (i) thermal evaporation, (ii) coating from organic solution, or (iii) electrostatic lamination. The first two techniques result in polycrystalline active layers; they are much easier to produce, but result in relatively poor transistor performance. Numerous variations of the solution coating technique (ii) are known, including dip-coating, spin-coating, inkjet printing and screen printing. The electrostatic lamination technique is based on manual peeling of a thin layer off a single organic crystal; it results in a superior single-crystalline active layer, yet it is more tedious. The thickness of the gate oxide and the active layer is below one micrometer.[21]

Carrier transport

[edit]
Evolution of carrier mobility in organic field-effect transistor[21]

The carrier transport in OFET is specific for two-dimensional (2D) carrier propagation through the device. Various experimental techniques were used for this study, such as Haynes - Shockley experiment on the transit times of injected carriers, time-of-flight (TOF) experiment[32] for the determination of carrier mobility, pressure-wave propagation experiment for probing electric-field distribution in insulators, organic monolayer experiment for probing orientational dipolar changes, optical time-resolved second harmonic generation (TRM-SHG), etc. Whereas carriers propagate through polycrystalline OFETs in a diffusion-like (trap-limited) manner,[33] they move through the conduction band in the best single-crystalline OFETs.[21]

The most important parameter of OFET carrier transport is carrier mobility. Its evolution over the years of OFET research is shown in the graph for polycrystalline and single crystalline OFETs. The horizontal lines indicate the comparison guides to the main OFET competitors – amorphous (a-Si) and polycrystalline silicon. The graph reveals that the mobility in polycrystalline OFETs is comparable to that of a-Si whereas mobility in rubrene-based OFETs (20–40 cm2/(V·s)) approaches that of best poly-silicon devices.[21]

Development of accurate models of charge carrier mobility in OFETs is an active field of research. Fishchuk et al. have developed an analytical model of carrier mobility in OFETs that accounts for carrier density and the polaron effect.[34]

While average carrier density is typically calculated as function of gate voltage when used as an input for carrier mobility models,[35] modulated amplitude reflectance spectroscopy (MARS) has been shown to provide a spatial map of carrier density across an OFET channel.[36]

Light-emitting OFETs

[edit]

Because an electric current flows through such a transistor, it can be used as a light-emitting device, thus integrating current modulation and light emission. In 2003, a German group reported the first organic light-emitting field-effect transistor (OLET).[37] The device structure comprises interdigitated gold source- and drain electrodes and a polycrystalline tetracene thin film. Both positive charges (holes) as well as negative charges (electrons) are injected from the gold contacts into this layer leading to electroluminescence from the tetracene.

See also

[edit]

References

[edit]
  1. ^ Salleo, A; Chabinyc, M.L.; Yang, M.S.; Street, RA (2002). "Polymer thin-film transistors with chemically modified dielectric interfaces". Applied Physics Letters. 81 (23): 4383–4385. Bibcode:2002ApPhL..81.4383S. doi:10.1063/1.1527691.
  2. ^ Kaltenbrunner, Martin (2013). "An ultra-lightweight design for imperceptible plastic electronics". Nature. 499 (7459): 458–463. Bibcode:2013Natur.499..458K. doi:10.1038/nature12314. PMID 23887430. S2CID 2657929.
  3. ^ Nawrocki, Robert (2016). "300-nm Imperceptible, Ultraflexible, and Biocompatible e-Skin Fit with Tactile Sensors and Organic Transistors". Advanced Electronic Materials. 2 (4): 1500452. doi:10.1002/aelm.201500452. S2CID 138355533.
  4. ^ プラスチックフィルム上の有機TFT駆動有機ELディスプレイで世界初のフルカラー表示を実現. sony.co.jp (in Japanese)
  5. ^ Flexible, full-color OLED display. pinktentacle.com (2025-08-04).
  6. ^ US 1745175, Lilienfeld, Julius Edgar, "Method and apparatus for controlling electric currents", published 2025-08-04 
  7. ^ Huff, Howard; Riordan, Michael (2025-08-04). "Frosch and Derick: Fifty Years Later (Foreword)". The Electrochemical Society Interface. 16 (3): 29. doi:10.1149/2.F02073IF. ISSN 1064-8208.
  8. ^ Frosch, C. J.; Derick, L (1957). "Surface Protection and Selective Masking during Diffusion in Silicon". Journal of the Electrochemical Society. 104 (9): 547. doi:10.1149/1.2428650.
  9. ^ Bassett, Ross Knox (2007). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. pp. 22–23. ISBN 978-0-8018-8639-3.
  10. ^ Atalla, M.; Kahng, D. (1960). "Silicon-silicon dioxide field induced surface devices". IRE-AIEE Solid State Device Research Conference.
  11. ^ "1960 – Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum. Retrieved 2025-08-04.
  12. ^ KAHNG, D. (1961). "Silicon-Silicon Dioxide Surface Device". Technical Memorandum of Bell Laboratories: 583–596. doi:10.1142/9789814503464_0076. ISBN 978-981-02-0209-5. {{cite journal}}: ISBN / Date incompatibility (help)
  13. ^ Lojek, Bo (2007). History of Semiconductor Engineering. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. p. 321. ISBN 978-3-540-34258-8.
  14. ^ "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. April 2, 2018. Retrieved 28 July 2019.
  15. ^ Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239.
  16. ^ Weimer, P.K. (1962). "TFT – A New Thin-Film Transistor". Proc. IRE. 50 (6): 1462–1469. doi:10.1109/JRPROC.1962.288190. S2CID 51650159.
  17. ^ Kimizuka, Noboru; Yamazaki, Shunpei (2016). Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Fundamentals. John Wiley & Sons. p. 217. ISBN 9781119247401.
  18. ^ "What are OLEDs and OLETs?". LAMP Project. Framework Programmes for Research and Technological Development. Retrieved 29 July 2019.
  19. ^ Tsumura, A.; Koezuka, H.; Ando, Tsuneya (3 November 1986). "Macromolecular electronic device: Field-effect transistor with a polythiophene thin film". Applied Physics Letters. 49 (18): 1210–1212. Bibcode:1986ApPhL..49.1210T. doi:10.1063/1.97417. ISSN 0003-6951.
  20. ^ Koezuka, H.; Tsumura, A.; Ando, Tsuneya (1987). "Field-effect transistor with polythiophene thin film". Synthetic Metals. 18 (1–3): 699–704. doi:10.1016/0379-6779(87)90964-7.
  21. ^ a b c d e f g Hasegawa, Tatsuo; Takeya, Jun (2009). "Organic field-effect transistors using single crystals". Sci. Technol. Adv. Mater. (free download). 10 (2): 024314. Bibcode:2009STAdM..10b4314H. doi:10.1088/1468-6996/10/2/024314. PMC 5090444. PMID 27877287.
  22. ^ a b Yamashita, Yoshiro (2009). "Organic semiconductors for organic field-effect transistors". Sci. Technol. Adv. Mater. (free download). 10 (2): 024313. Bibcode:2009STAdM..10b4313Y. doi:10.1088/1468-6996/10/2/024313. PMC 5090443. PMID 27877286.
  23. ^ Dimitrakopoulos, C.D.; Malenfant, P.R.L. (2002). "Organic Thin Film Transistors for Large Area Electronics". Adv. Mater. 14 (2): 99. Bibcode:2002AdM....14...99D. doi:10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9.
  24. ^ Reese, Colin; Roberts, Mark; Ling, Mang-Mang; Bao, Zhenan (2004). "Organic thin film transistors". Mater. Today. 7 (9): 20. doi:10.1016/S1369-7021(04)00398-0.
  25. ^ a b Klauk, Hagen (2010). "Organic thin-film transistors". Chem. Soc. Rev. 39 (7): 2643–66. doi:10.1039/B909902F. PMID 20396828.
  26. ^ Shur, Michael (September 1990). Physics of Semiconductor Devices. Englewood Cliffs, NJ: Prentice-Hall. ISBN 978-0-13-666496-3.
  27. ^ Horowitz, Paul; Winfield Hill (1989). The Art of Electronics (2nd ed.). Cambridge University Press. ISBN 978-0-521-37095-0.
  28. ^ Shockley, W. (1952). "A Unipolar "Field-Effect" Transistor". Proc. IRE. 40 (11): 1365–1376. doi:10.1109/JRPROC.1952.273964. S2CID 51666093.
  29. ^ Baude, P. F.; Ender, D. A.; Haase, M. A.; Kelley, T. W.; Muyres, D. V.; Theiss, S. D. (2003). "Pentacene-based radio-frequency identification circuitry". Phys. Lett. 82 (22): 3964. Bibcode:2003ApPhL..82.3964B. doi:10.1063/1.1579554.
  30. ^ McCulloch, I. presented at the 229th ACS Natl. Meeting, San Diego, CA, March 2005
  31. ^ Sirringhaus, H. (2005). "Device Physics of Solution-Processed Organic Field-Effect Transistors". Adv. Mater. 17 (20): 2411–2425. Bibcode:2005AdM....17.2411S. doi:10.1002/adma.200501152. S2CID 10232884.
  32. ^ Weis, Martin; Lin, Jack; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa (2009). "Analysis of Transient Currents in Organic Field Effect Transistor: The Time-of-Flight Method". J. Phys. Chem. C. 113 (43): 18459. doi:10.1021/jp908381b.
  33. ^ Manaka, Takaaki; Liu, Fei; Weis, Martin; Iwamoto, Mitsumasa (2008). "Diffusionlike electric-field migration in the channel of organic field-effect transistors". Phys. Rev. B. 78 (12): 121302. Bibcode:2008PhRvB..78l1302M. doi:10.1103/PhysRevB.78.121302.
  34. ^ Fishchuk, Ivan I.; Kadashchuk, Andrey; Hoffmann, Sebastian T.; Athanasopoulos, Stavros; Genoe, J.; B?ssler, Heinz; K?hler, Anna (2013). "Unified description for hopping transport in organic semiconductors including both energetic disorder and polaronic contributions" (PDF). Physical Review B. 88 (12): 125202. Bibcode:2013PhRvB..88l5202F. doi:10.1103/PhysRevB.88.125202. ISSN 0163-1829.
  35. ^ Tanase, C.; Meijer, E.J.; Blom, P.W.M.; De Leeuw, D.M. (June 2003). "Local charge carrier mobility in disordered organic field-effect transistors" (PDF). Organic Electronics. 4 (1): 33–37. doi:10.1016/S1566-1199(03)00006-5.
  36. ^ Davis, Andrew R.; Pye, Lorelle N.; Katz, Noam; Hudgings, Janice A.; Carter, Kenneth R. (2014). "Spatially Mapping Charge Carrier Density and Defects in Organic Electronics Using Modulation-Amplified Reflectance Spectroscopy". Advanced Materials. 26 (26): 4539–4545. Bibcode:2014AdM....26.4539D. doi:10.1002/adma.201400859. ISSN 1521-4095. PMID 24889350. S2CID 38572802.
  37. ^ Hepp, Aline; Heil, Holger; Weise, Wieland; Ahles, Marcus; Schmechel, Roland; Von Seggern, Heinz (2003). "Light-Emitting Field-Effect Transistor Based on a Tetracene Thin Film". Phys. Rev. Lett. 91 (15): 157406. Bibcode:2003PhRvL..91o7406H. doi:10.1103/PhysRevLett.91.157406. PMID 14611497.
初中学历能做什么工作 风骚什么意思 受精卵着床的时候会有什么症状 买手是什么职业 马加其念什么
嗯嗯什么意思 外阴红肿瘙痒用什么药 脑梗塞吃什么药 什么是肺结节 咳嗽有白痰吃什么药好
阴阳八卦是什么生肖 菌群失调是什么意思 喉咙痛挂什么科 兔子的尾巴像什么 拔完智齿吃什么食物好
手足口病疫苗什么时候打 情绪低落是什么意思 干咳是什么病的前兆 补肝血吃什么食物最好 不均质回声是什么意思
单纯性肥胖是什么意思hcv8jop8ns2r.cn 杜甫被称为什么hcv9jop6ns8r.cn 蚂蚁为什么会咬人hcv9jop6ns8r.cn 双肾结晶是什么意思hcv9jop0ns5r.cn 八月十五什么星座qingzhougame.com
邪魅是什么意思hcv8jop5ns2r.cn 为什么光放屁hcv9jop2ns8r.cn 什么是黄精hcv7jop5ns1r.cn 为什么崴脚了休息一晚脚更疼fenrenren.com 呃是什么意思hcv7jop5ns3r.cn
巧夺天工什么意思hcv9jop0ns9r.cn 气加山念什么hcv8jop3ns0r.cn 大拇指发麻是什么原因hcv8jop3ns9r.cn 手掌中间那条线是什么线hcv8jop8ns6r.cn 压力是什么hcv9jop1ns4r.cn
广东有什么特色美食hcv9jop5ns5r.cn 24节气是什么hcv8jop1ns7r.cn 亚临床甲减是什么意思hcv7jop4ns6r.cn 有编制是什么意思96micro.com 治疗狐臭挂什么科hcv7jop6ns5r.cn
百度