检查骨头做什么检查| 桃花眼是什么意思| 鳞状上皮内高度病变是什么意思| 回家心切什么意思| 肚子痛挂什么科| 每天吃黄瓜有什么好处| 儿童头疼挂什么科| 老年人打嗝不止是什么原因| 北京晚上有什么好玩的景点| 关口是什么意思| 左侧淋巴结肿大是什么原因| 解酒喝什么饮料| 血压高降不下来是什么原因| 黑户是什么| 血小板比积偏高是什么意思| 刘亦菲是什么星座| 向日葵什么时候成熟| 淡盐水是什么水| 挚爱的意思是什么| 鸡蛋不能和什么一起吃| scc什么意思| 命途多舛是什么意思| 后脑勺胀痛什么原因| 本自具足是什么意思| 乳腺属于什么科室| 口吐白沫是什么生肖| 吃芒果不能吃什么| 脸上脱皮是什么原因| 此加石念什么| 胃肠镜检查挂什么科| 维生素b2有什么功效| 语字五行属什么| 沾沾喜气什么意思| 小腹痛挂什么科| 流局是什么意思| 什么是熊猫血| 火龙果什么季节成熟| 新生儿湿疹抹什么药膏| 盆腔b超检查什么| 吃洋葱对身体有什么好处| 梦见吃红薯是什么意思| 什么津津| 人为什么会低血糖| 低血糖的人吃什么东西最好| 钢琴10级是什么水平| 七月二号是什么日子| 男孩适合学什么专业| 感恩节是什么时候| 皮肚是什么| 高温丝假发是什么材质| 提拔是什么意思| 腿抽筋是什么原因引起的| 牙齿流血是什么原因| 尿道炎症状吃什么药| 丹参有什么作用| 12月21日什么星座| 一直打哈欠是什么原因| 吾子是什么意思| 孕妇缺铁性贫血对胎儿有什么影响| hcg是什么| 特点是什么意思| 贵族是什么意思啊| 肺有小结节要注意什么| 属猴的本命佛是什么佛| 7.1是什么星座| lfc是什么意思| 阿拉蕾什么意思| 农历9月11日是什么星座| 今日农历是什么日子| 吃什么水果对胃好| 晚上吃芒果有什么好处和坏处| 做梦被杀了是什么征兆| 补血吃什么最好最快| xyz是什么意思| 化妆品属于什么行业| 纳少是什么意思| 世界上最小的花是什么花| 6月底是什么星座| 东华帝君是什么神仙| 晚上吃什么不发胖| 孕前检查一般有什么项目| 绿茶喝多了有什么危害| 头面是什么| 哺乳期什么时候来月经正常| 什么是液化| 阑尾炎有什么症状| 头骨凹陷是什么原因| 槐树什么时候开花| 阴毛的作用是什么| 社保卡是干什么用的| 大包子什么馅好吃| 芍药花什么时候开花| 肾炎可以吃什么水果| 脚气用什么药膏最好| 限行是什么意思| 去肝火喝什么茶好| 女右眉毛跳是什么预兆| 青蛙长什么样| 草酸钙结晶是什么意思| 脾的主要功能是什么| 罗可以组什么词| 双鱼座的幸运石是什么| 什么是尿失禁| 吃完饭想吐是什么原因| 像狐狸的狗是什么狗| 什么水果含维生素d| 望而生畏是什么意思| 大姨妈来了吃什么水果好| 银环蛇咬伤后什么症状| 70年出生属什么生肖| 身体动不动就出汗是什么原因| 呼风唤雨的动物是什么生肖| 一什么森林| 尿红细胞阳性什么意思| 医疗美容需要什么资质| 水印是什么| 胸膜炎挂什么科| 脑白质变性什么意思| 为什么会感冒| 开是什么生肖| 又什么又什么的花朵| 怎么吃都不胖是什么原因| 机器灵砍菜刀是什么意思| 母的第三笔是什么| 望尘莫及什么意思| 原发性高血压什么意思| 2044年是什么年| 29周岁属什么生肖| 咳嗽吃什么好得快| 孩子睡觉磨牙是什么原因| 弛张热常见于什么病| 机器灵砍菜刀是什么意思| vdo是什么牌子| 什么是崩漏| cdfl是什么意思| 感冒了挂什么科| 树菠萝什么时候成熟| 开水烫伤用什么药膏好得快| 1966年属什么| 一什么桌子| 胃酸是什么| 棉花糖是什么做的| 参谋是什么军衔| 断奶吃什么| 开通花呗有什么风险| 霉菌性炎症用什么药效果最好| 什么东西补血效果最好| 24岁属什么生肖| 排骨和什么一起炖好吃| 肾挂什么科| 豆角没熟中毒什么症状| 有福是什么意思| 脾虚湿气重吃什么药| 6.8什么星座| 嘴唇上火吃什么药| 渗液是什么意思| pda是什么意思| 艾滋病的症状是什么| 月经先期是什么意思| 四相是什么意思| 维生素a中毒是什么症状| 手脚发麻是什么病征兆| 霍家为什么娶郭晶晶| 什么是穿刺| 医生停诊是什么意思| 大三阳转小三阳意味着什么| 420是什么意思| 互诉衷肠是什么意思| 鳄鱼的尾巴有什么作用| 塔罗是什么| 银杏叶提取物治什么病| 脱盐乳清粉是什么| 逼长什么样| 风湿是什么| 茶油有什么功效| 这是什么情况| ce是什么意思| 什么小吃最火爆最赚钱| 飞机什么东西不能带| 全麻是什么感觉| 抹布什么意思| 害怕的反义词是什么| 鳖是什么动物| 男命正官代表什么| 血燥吃什么好| 肾虚吃什么中成药| pca是什么意思| 高压氧舱治疗什么效果| 鬼针草有什么功效| 董五行属什么| 什么叫缘分| 杀阴虱用什么药最快| 戒烟后为什么会发胖| 情分是什么意思| 红酒兑什么好喝| 养胃喝什么茶| 南京的简称是什么| 颔是什么部位| 梦见两个小男孩是什么意思| 困是什么意思| 太阳穴痛什么原因| 每天经常放屁什么原因| 黑鱼吃什么| 对什么有好处的英文| 十二月十八号是什么星座| 孕妇心情不好对胎儿有什么影响| 为什么端午节要吃粽子| 虱子用什么药可以根除| 系带断了有什么影响| 子官肌瘤吃什么食物| 手发麻发木是什么病的前兆| 一箭双雕是什么生肖| 奔跑的马是什么牌子的车| 百草霜是什么| 属鼠的贵人是什么属相| 前列腺增大钙化是什么意思| 撤退性出血是什么意思| 血脂高挂什么科| 麻醉科属于什么科室| 脾胃虚弱有什么症状| 吃什么蔬菜能降血脂| mandy是什么意思| 肝囊肿吃什么药能消除| 孟买血型是什么意思| 做生意的人最忌讳什么| 大头鱼吃什么食物| 五指毛桃煲汤配什么| 软组织挫伤用什么药| 没壳的蜗牛叫什么| 鹅喜欢吃什么食物| 屁股痛挂什么科| 什么颜色显黑| 夏天什么时候最热| 新西兰移民需要什么条件| 小腿外侧是什么经络| 格拉苏蒂手表什么档次| 2005年属鸡的是什么命| 不可一世是什么意思| 吃饱就犯困是什么原因| 心肌酶高有什么危害| 心慌是什么引起的| 大名鼎鼎是什么意思| 脖子后面有痣代表什么| 男人嘴小代表什么意思| 肾结石吃什么水果最好| 林冲是什么生肖| 心脏病是什么症状| 图什么| 人头什么动| 失去味觉是什么原因| 什么品种荔枝最好吃| 势利是什么意思| 四月四号是什么星座| 喉咙痒咳嗽吃什么药| 路上遇到蛇是什么征兆| 4a广告公司什么意思| 什么是孢子粉| 血钾低吃什么| 做梦钓到大鱼什么意思| 气性坏疽是什么病| 周公解梦梦见蛇是什么意思| 未成年改名字需要什么手续| hr是什么品牌| 大名鼎鼎是什么意思| 百度Jump to content

美国加州小学枪击事件 枪手与被杀女教师为夫妻

From Wikipedia, the free encyclopedia
百度 十三届全国人大及其常委会要认清使命、奋发有为,切实肩负起新时代长期坚持、不断完善人民代表大会制度的崇高使命。

A photodetector salvaged from a CD-ROM drive. The photodetector contains three photodiodes, visible in the photo (in center).

Photodetectors, also called photosensors, are devices that detect light or other forms of electromagnetic radiation and convert it into an electrical signal. They are essential in a wide range of applications, from digital imaging and optical communication to scientific research and industrial automation. Photodetectors can be classified by their mechanism of detection, such as the photoelectric effect, photochemical reactions, or thermal effects, or by performance metrics like spectral response. Common types include photodiodes, phototransistors, and photomultiplier tubes, each suited to specific uses. Solar cells, which convert light into electricity, are also a type of photodetector. This article explores the principles behind photodetectors, their various types, applications, and recent advancements in the field.

History

[edit]

The development of photodetectors began with the discovery of the photoelectric effect by Heinrich Hertz in 1887, later explained by Albert Einstein in 1905.[1] Early photodetectors, such as selenium cells invented in the late 19th century, were used in light meters and telegraph systems.[2] The 1930s saw the invention of photomultiplier tubes, enabling the detection of faint light signals, which revolutionized fields like nuclear physics and astronomy. The mid-20th century brought semiconductor-based photodetectors, such as photodiodes and phototransistors, which transformed industries like telecommunications and computing.[3] Today, advancements continue with high-speed detectors and quantum technologies.

Classification

[edit]

Photodetectors can be classified based on their mechanism of operation and device structure. Here are the common classifications:

Based on mechanism of operation

[edit]
A commercial amplified photodetector for use in optics research

Photodetectors may be classified by their mechanism for detection:[4][unreliable source?][5][6]

  • Photoconductive effect: These detectors work by changing their electrical conductivity when exposed to light. The incident light generates electron-hole pairs in the material, altering its conductivity. Photoconductive detectors are typically made of semiconductors.[7]
  • Photoemission or photoelectric effect: Photons cause electrons to transition from the conduction band of a material to free electrons in a vacuum or gas.
  • Thermal: Photons cause electrons to transition to mid-gap states then decay back to lower bands, inducing phonon generation and thus heat.
  • Polarization: Photons induce changes in polarization states of suitable materials, which may lead to change in index of refraction or other polarization effects.
  • Photochemical: Photons induce a chemical change in a material.
  • Weak interaction effects: photons induce secondary effects such as in photon drag[8][9] detectors or gas pressure changes in Golay cells.

Photodetectors may be used in different configurations. Single sensors may detect overall light levels. A 1-D array of photodetectors, as in a spectrophotometer or a Line scanner, may be used to measure the distribution of light along a line. A 2-D array of photodetectors may be used as an image sensor to form images from the pattern of light before it.

A photodetector or array is typically covered by an illumination window, sometimes having an anti-reflective coating.

Based on device structure

[edit]

Based on device structure, photodetectors can be classified into the following categories:

  1. MSM Photodetector: A metal-semiconductor-metal (MSM) photodetector consists of a semiconductor layer sandwiched between two metal electrodes. The metal electrodes are interdigitated, forming a series of alternating fingers or grids. The semiconductor layer is typically made of materials such as silicon (Si), gallium arsenide (GaAs), indium phosphide (InP) or antimony selenide (Sb2Se3).[7] Various methods are employed together to improve its characteristics, such as manipulating the vertical structure, etching, changing the substrate, and utilizing plasmonics.[10] The best achievable efficiency is shown by Antimony Selenide photodetectors.
  2. Photodiodes: Photodiodes are the most common type of photodetectors. They are semiconductor devices with a PN junction. Incident light generates electron-hole pairs in the depletion region of the junction, producing a photocurrent. Photodiodes can be further categorized into: a. PIN Photodiodes: These photodiodes have an additional intrinsic (I) region between the P and N regions, which extends the depletion region and improves the device's performance. b. Schottky Photodiodes: In Schottky photodiodes, a metal-semiconductor junction is used instead of a PN junction. They offer high-speed response and are commonly used in high-frequency applications.
  3. Avalanche Photodiodes (APDs): APDs are specialized photodiodes that incorporate avalanche multiplication. They have a high electric field region near the PN junction, which causes impact ionization and produces additional electron-hole pairs. This internal amplification improves the detection sensitivity. APDs are widely used in applications requiring high sensitivity, such as low-light imaging and long-distance optical communication.[11]
  4. Phototransistors: Phototransistors are transistors with a light-sensitive base region. Incident light causes a change in the base current, which controls the transistor's collector current. Phototransistors offer amplification and can be used in applications that require both detection and signal amplification.
  5. Charge-Coupled Devices (CCDs): CCDs are imaging sensors composed of an array of tiny capacitors. Incident light generates charge in the capacitors, which is sequentially read and processed to form an image. CCDs are commonly used in digital cameras and scientific imaging applications.
  6. CMOS Image Sensors (CIS): CMOS image sensors are based on complementary metal-oxide-semiconductor (CMOS) technology. They integrate photodetectors and signal processing circuitry on a single chip. CMOS image sensors have gained popularity due to their low power consumption, high integration, and compatibility with standard CMOS fabrication processes.
  7. Photomultiplier Tubes (PMTs): PMTs are vacuum tube-based photodetectors. They consist of a photocathode that emits electrons when illuminated, followed by a series of dynodes that multiply the electron current through secondary emission. PMTs offer high sensitivity and are used in applications that require low-light detection, such as particle physics experiments and scintillation detectors.

These are some of the common photodetectors based on device structure. Each type has its own characteristics, advantages, and applications in various fields, including imaging, communication, sensing, and scientific research.

Properties

[edit]

There are a number of performance metrics, also called figures of merit, by which photodetectors are characterized and compared[4][5]

  • Quantum efficiency: The number of carriers (electrons or holes) generated per photon.
  • Responsivity: The output current divided by total light power falling upon the photodetector.
  • Noise-equivalent power: The amount of light power needed to generate a signal comparable in size to the noise of the device.
  • Detectivity: The square root of the detector area divided by the noise equivalent power.
  • Gain: The output current of a photodetector divided by the current directly produced by the photons incident on the detectors, i.e., the built-in current gain.
  • Dark current: The current flowing through a photodetector even in the absence of light.
  • Response time: The time needed for a photodetector to go from 10% to 90% of final output.
  • Noise spectrum: The intrinsic noise voltage or current as a function of frequency. This can be represented in the form of a noise spectral density.
  • Nonlinearity: The RF-output is limited by the nonlinearity of the photodetector[12]
  • Spectral response: The response of a photodetector as a function of photon frequency.

Subtypes

[edit]

Grouped by mechanism, photodetectors include the following devices:

Photoemission or photoelectric

[edit]

Semiconductor

[edit]

Photovoltaic

[edit]

Thermal

[edit]
  • Bolometers measure the power of incident electromagnetic radiation via the heating of a material with a temperature-dependent electrical resistance. A microbolometer is a specific type of bolometer used as a detector in a thermal camera.
  • Cryogenic detectors are sufficiently sensitive to measure the energy of single x-ray, visible and infrared photons.[20]
  • Pyroelectric detectors detect photons through the heat they generate and the subsequent voltage generated in pyroelectric materials.
  • Thermopiles detect electromagnetic radiation through heat, then generating a voltage in thermocouples.
  • Golay cells detect photons by the heat they generate in a gas-filled chamber, causing the gas to expand and deform a flexible membrane whose deflection is measured.

Photochemical

[edit]

Polarization

[edit]

Graphene/silicon photodetectors

[edit]

A graphene/n-type silicon heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity. Graphene is coupled with silicon quantum dots (Si QDs) on top of bulk Si to form a hybrid photodetector. Si QDs cause an increase of the built-in potential of the graphene/Si Schottky junction while reducing the optical reflection of the photodetector. Both the electrical and optical contributions of Si QDs enable a superior performance of the photodetector.[22]

Applications

[edit]

Photodetectors are integral to numerous fields:

  • Consumer electronics: CCD and CMOS sensors in cameras, optical storage devices.
  • Telecommunications: Fiber optic communication for high-speed data transmission.
  • Scientific research: Spectroscopy, particle detection, and astronomy.
  • Industrial automation: Barcode scanners, quality control systems.
  • Medical devices: Pulse oximeters, endoscopes.
  • Environmental monitoring: Air and water quality sensors, weather stations.

Emerging applications include autonomous vehicles and quantum computing.[23]

[edit]

Recent developments in photodetector technology include:

  • High-speed detectors: For faster optical communication.
  • Quantum photodetectors: For quantum computing and cryptography.
  • Novel materials: Organic and perovskite detectors for flexible electronics.
  • Integration with AI: For advanced image processing in autonomous systems.

Future research focuses on improving sensitivity, reducing noise, and expanding wavelength detection ranges.[24]

See also

[edit]

References

[edit]
  1. ^ Einstein, Albert (1905). On a Heuristic Point of View Concerning the Production and Transformation of Light. Annalen der Physik. doi:10.1002/andp.19053220607.
  2. ^ Smith, Willoughby (1913). Selenium Cells. Ernest Benn Limited.
  3. ^ Donati, Silvano (2000). Photodetectors: Devices, Circuits and Applications. Prentice Hall. ISBN 978-0130203373.
  4. ^ a b Donati, S. "Photodetectors" (PDF). unipv.it. Prentice Hall. Retrieved 1 June 2016.
  5. ^ a b Yotter, R.A.; Wilson, D.M. (June 2003). "A review of photodetectors for sensing light-emitting reporters in biological systems". IEEE Sensors Journal. 3 (3): 288–303. Bibcode:2003ISenJ...3..288Y. doi:10.1109/JSEN.2003.814651.
  6. ^ St?ckmann, F. (May 1975). "Photodetectors, their performance and their limitations". Applied Physics. 7 (1): 1–5. Bibcode:1975ApPhy...7....1S. doi:10.1007/BF00900511. S2CID 121425624.
  7. ^ a b Singh, Yogesh; Kumar, Manoj; Yadav, Reena; Kumar, Ashish; Rani, Sanju; Shashi; Singh, Preetam; Husale, Sudhir; Singh, V. N. (2025-08-04). "Enhanced photoconductivity performance of microrod-based Sb2Se3 device". Solar Energy Materials and Solar Cells. 243: 111765. doi:10.1016/j.solmat.2022.111765. ISSN 0927-0248.
  8. ^ A. Grinberg, Anatoly; Luryi, Serge (1 July 1988). "Theory of the photon-drag effect in a two-dimensional electron gas". Physical Review B. 38 (1): 87–96. Bibcode:1988PhRvB..38...87G. doi:10.1103/PhysRevB.38.87. PMID 9945167.
  9. ^ Bishop, P.; Gibson, A.; Kimmitt, M. (October 1973). "The performance of photon-drag detectors at high laser intensities". IEEE Journal of Quantum Electronics. 9 (10): 1007–1011. Bibcode:1973IJQE....9.1007B. doi:10.1109/JQE.1973.1077407.
  10. ^ Singh, Yogesh; Parmar, Rahul; Srivastava, Avritti; Yadav, Reena; Kumar, Kapil; Rani, Sanju; Shashi; Srivastava, Sanjay K.; Husale, Sudhir; Sharma, Mahesh; Kushvaha, Sunil Singh; Singh, Vidya Nand (2025-08-04). "Highly Responsive Near-Infrared Si/Sb 2 Se 3 Photodetector via Surface Engineering of Silicon". ACS Applied Materials & Interfaces. 15 (25): 30443–30454. doi:10.1021/acsami.3c04043. ISSN 1944-8244.
  11. ^ Stillman, G. E.; Wolfe, C. M. (2025-08-04), Willardson, R. K.; Beer, Albert C. (eds.), Chapter 5 Avalanche Photodiodes**This work was sponsored by the Defense Advanced Research Projects Agency and by the Department of the Air Force., Semiconductors and Semimetals, vol. 12, Elsevier, pp. 291–393, retrieved 2025-08-04
  12. ^ Hu, Yue (1 October 2014). "Modeling sources of nonlinearity in a simple pin photodetector". Journal of Lightwave Technology. 32 (20): 3710–3720. Bibcode:2014JLwT...32.3710H. CiteSeerX 10.1.1.670.2359. doi:10.1109/JLT.2014.2315740. S2CID 9882873.
  13. ^ "Photo Detector Circuit". oscience.info.
  14. ^ Pearsall, Thomas (2010). Photonics Essentials, 2nd edition. McGraw-Hill. ISBN 978-0-07-162935-5. Archived from the original on 2025-08-04. Retrieved 2025-08-04.
  15. ^ Paschotta, Dr. Rüdiger. "Encyclopedia of Laser Physics and Technology - photodetectors, photodiodes, phototransistors, pyroelectric photodetectors, array, powermeter, noise". www.rp-photonics.com. Retrieved 2025-08-04.
  16. ^ "PDA10A(-EC) Si Amplified Fixed Gain Detector User Manual" (PDF). Thorlabs. Retrieved 24 April 2018.
  17. ^ "DPD80 760nm Datasheet". Resolved Instruments. Retrieved 24 April 2018.
  18. ^ Fossum, E. R.; Hondongwa, D. B. (2014). "A Review of the Pinned Photodiode for CCD and CMOS Image Sensors". IEEE Journal of the Electron Devices Society. 2 (3): 33–43. doi:10.1109/JEDS.2014.2306412.
  19. ^ "Silicon Drift Detectors" (PDF). tools.thermofisher.com. Thermo Scientific.
  20. ^ Enss, Christian, ed. (2005). Cryogenic Particle Detection. Springer, Topics in applied physics 99. ISBN 978-3-540-20113-7.
  21. ^ Yuan, Hongtao; Liu, Xiaoge; Afshinmanesh, Farzaneh; Li, Wei; Xu, Gang; Sun, Jie; Lian, Biao; Curto, Alberto G.; Ye, Guojun; Hikita, Yasuyuki; Shen, Zhixun; Zhang, Shou-Cheng; Chen, Xianhui; Brongersma, Mark; Hwang, Harold Y.; Cui, Yi (1 June 2015). "Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction". Nature Nanotechnology. 10 (8): 707–713. arXiv:1409.4729. Bibcode:2015NatNa..10..707Y. doi:10.1038/nnano.2015.112. PMID 26030655.
  22. ^ Yu, Ting; Wang, Feng; Xu, Yang; Ma, Lingling; Pi, Xiaodong; Yang, Deren (2016). "Graphene Coupled with Silicon Quantum Dots for High-Performance Bulk-Silicon-Based Schottky-Junction Photodetectors". Advanced Materials. 28 (24): 4912–4919. doi:10.1002/adma.201506140. PMID 27061073. S2CID 205267070.
  23. ^ Hadfield, Robert H. (2009). "Single-photon detectors for optical quantum information applications". Nature Photonics. 3 (12): 696–705. doi:10.1038/nphoton.2009.230.
  24. ^ Konstantatos, Gerasimos (2007). "Sensitive solution-processed visible-wavelength photodetectors". Nature Photonics. 1 (9): 531–534. doi:10.1038/nphoton.2007.147.
[edit]
膏肓是什么意思 白马怕青牛是什么意思 煮毛豆放什么调料 姗字五行属什么 什么药退烧快
乌龟为什么喜欢叠罗汉 汗蒸有什么好处 吹面不寒杨柳风什么意思 检查血常规挂什么科 一日清闲一日仙是什么生肖
李姓男孩起什么名字好 胆汁淤积症有什么症状 万事如意是什么生肖 天庭饱满是什么意思 大象灰配什么颜色好看
卤水是什么 一吃东西就肚子疼是什么原因 眼震是什么症状 眼色是什么意思 精神小伙什么意思
狮子座上升星座是什么hcv8jop0ns0r.cn 古丽是什么意思hcv7jop6ns2r.cn 什么是股癣hcv9jop4ns0r.cn 发什么什么大hcv8jop8ns8r.cn 排便困难是什么原因hcv8jop4ns8r.cn
回归是什么意思hcv7jop9ns6r.cn b型阳性血是什么意思hcv9jop1ns3r.cn 38是什么生肖1949doufunao.com 2044年是什么年hcv9jop5ns5r.cn 酸菜鱼里面加什么配菜好吃bjhyzcsm.com
属鸡的守护神是什么菩萨hcv7jop9ns2r.cn 吃槐花有什么好处hcv9jop1ns7r.cn 棕色是什么颜色hcv7jop9ns5r.cn la是什么意思hcv8jop6ns8r.cn 军绿色裤子配什么上衣hcv7jop9ns2r.cn
calcium是什么意思hcv9jop7ns5r.cn 养老金什么时候可以领取hcv8jop9ns4r.cn 螃蟹的血是什么颜色的hcv9jop0ns5r.cn 肚脐眼左边是什么部位aiwuzhiyu.com doosan挖掘机是什么牌子hcv8jop6ns6r.cn
百度