肠胃不好吃什么水果比较好| tpc是什么意思| 素的部首是什么| 景泰蓝是什么| 罗非鱼长什么样| 看食道挂什么科室| 津是什么意思| 糯米粉做什么好吃| 热疹用什么药膏最好| 手脚发烫是什么原因造成的| ye是什么颜色| 孕早期生气对胎儿有什么影响| 欢喜冤家是什么意思| 两点水的字和什么有关| 杰五行属性是什么| 金蝉子是什么佛| 滚刀肉是什么意思| 流产吃什么药可以堕胎| 左眼皮一直跳是什么原因| 丛生是什么意思| 梦见蛇是什么意思| 人为什么会近视| 胳膊麻是什么原因| 什么是癌胚抗原| 镇团委书记是什么级别| 意味深长的意思是什么| 口里有甜味是什么原因| 什么日子适合搬家| 小傻瓜是什么意思| 活着的意义是什么| 血糖高的人能吃什么水果| 硫酸亚铁是什么颜色| 单身公寓是什么意思| 周公解梦掉牙齿意味着什么| 鹅蛋吃了有什么好处| 孕期补铁吃什么| 屠苏酒是什么酒| 顶臀径是什么意思| 孕前检查一般有什么项目| 几又念什么| 进贡是什么意思| 菠萝和什么不能一起吃| 刷牙时牙龈出血是什么原因| 2016年是属什么年| 男性解脲支原体是什么病| lad是什么意思| 半夜吃什么不会胖| 姐姐的儿子叫什么| 检查hpv需要注意什么提前注意什么| 小心地什么| 辣椒炒肉用什么肉| 孩子结膜炎用什么眼药水| 公主病是什么意思| 类风湿吃什么药有效| 眼睛老是流眼泪是什么原因| 人为什么会生气| 嗳气打嗝吃什么药| 最不干净的动物是什么生肖| pp材质是什么意思| 为什么拉的屎是墨绿色| 什么叫椎间盘膨出| mmc是什么意思| 梦见好多水是什么预兆| 朱砂是什么材质| 耳毛念什么| 安全监察是一种带有什么的监督| 普陀山求什么最灵| 跑马了是什么意思| 海螺吃什么食物| 吃什么食物能长高| 晚上睡觉口干舌燥是什么原因| 公卿是什么意思| 熬夜吃什么维生素| 空调不热是什么原因| 早上起来手麻是什么原因| 怀孕了不能吃什么| 耳什么目明| 流黄鼻涕是什么感冒| 女人为什么会宫外怀孕| 3a是什么| cpf是什么意思| 孕妇喉咙痛吃什么好得最快| 5月11号是什么星座| 肝火旺盛吃什么食物| 木薯是什么| 一物降一物前面一句是什么| 便血是什么样的| 五朵金花是什么意思| 坐地户是什么意思| 糖尿病人吃什么水果好| 拨备覆盖率是什么意思| 什么病不能吃阿胶| 诺欣妥是什么药| 硫酸是什么| ca是什么元素| 连锁反应是什么意思| 咖啡加什么最好喝| 什么动物怕水| 疣长什么样子| 苍蝇馆子什么意思| 九秩是什么意思| 走肾不走心什么意思| 腮腺炎吃什么食物| 是什么符号| 开封菜是什么意思| 1026什么星座| 筋皮是什么肉| 回苏灵又叫什么| 便血鲜红色无疼痛是什么原因| 军犬一般是什么品种| 步后尘是什么意思| 1948属什么生肖| 莹五行属性是什么| 治便秘什么药最好| 什么是晶体| 胃肠镜检查挂什么科| 生蚝有什么功效| 牙疼有什么办法| 大黄是什么| 兵解是什么意思| 老年人缺钾吃什么好| 喝什么助眠| 皮肤长癣是什么原因引起的| 长水痘可以吃什么菜| 11月12号是什么星座| 中国第一长河是什么河| 血镁偏高是什么原因| 费心是什么意思| 吉利丁片是什么做的| 放浪形骸是什么意思| 药物过敏挂什么科| 脾虚吃什么药| 健脾养胃喝什么好| 紫薯不能和什么一起吃| 耳洞发炎流脓用什么药| 傻瓜是什么生肖| 牛黄是什么东西| 海绵是什么材料做的| 戒烟有什么好处| 怀孕都有什么症状| 为什么会长瘊子| 吃什么排气| 负荷是什么意思| 2024年属什么| 喝椰子汁有什么好处| 月经不规律吃什么药调理| 下午四点到五点是什么时辰| 什么是皈依| 扁平足是什么意思| 肾虚有什么表现| 扁桃体发炎不能吃什么| 喝红茶对身体有什么好处| 什么是性冷淡| 手心痒是什么原因| 什么津乐道| 心脏不好吃什么| 胆囊壁增厚吃什么药| 胆囊炎吃什么药| 夜间睡觉流口水是什么原因| 纸老虎是什么意思| 桃和什么不能一起吃| 手黄是什么原因| 为什么一动就满头大汗| 高圆圆老公叫什么名字| 寄生树有什么功效作用| 城隍庙是什么神| 戴黄金对身体有什么好处| 什么人容易得胆汁淤积| 菩提手串有什么寓意| 红艳艳的什么| 七叶一枝花主治什么病| 卧轨什么意思| 深水炸弹是什么意思| 阳痿什么意思| 寒酸是什么意思| 为什么冰箱冷藏室会结冰| 天衣无缝是什么意思| 中医四诊是什么| 蓝色配什么裤子| 签证和护照有什么区别| 梦见石头是什么意思| 买什么化妆品好| 犟驴是什么意思| 6月份出生是什么星座| 双清是什么意思| 老年痴呆症是什么原因引起的| 韭菜花炒什么好吃| 石榴木是什么生肖| 人为什么会衰老| 血糖高的人吃什么| 尽兴是什么意思| 脑梗前兆是什么症状| 壬寅年五行属什么| 梦见带小孩是什么意思| 梦见小白兔是什么意思| 春天有什么花| 仙草是什么草| 运动出汗有什么好处| %是什么意思| 阳虚湿热吃什么中成药| 间歇脉多见于什么病| 脚麻是什么病的前兆| 益母草颗粒什么时候喝| 叶绿素主要吸收什么光| 憋尿憋不住是什么原因| 吃柠檬是什么意思| 梗米是什么| 自诩是什么意思| 房颤是什么原因引起的| 落花雨你飘摇的美丽是什么歌| 经血发黑是什么原因| 属猪男和什么属相最配| 验孕棒什么时候测最准确| 尿激酶的作用及功效是什么| 1月16日什么星座| 为什么女生喜欢腹肌| 台阶是什么意思| 眉毛中间叫什么部位| 什么牌子的冰箱最好| 附属是什么意思| 抑郁吃什么药可以缓解情绪| 面部脂溢性皮炎用什么药| 人参适合什么人吃| 火是什么颜色| 猴年马月是什么时候| 天线宝宝都叫什么名字| 茶叶渣属于什么垃圾| 春雨绵绵是什么生肖| 咳嗽打什么点滴效果好| 工口是什么意思| 代糖是什么| 僵尸为什么怕糯米| 星五行属性是什么| 白凉粉是什么| 细菌性阴道炎用什么药效果好| 耳石症挂什么科| 抱大腿什么意思| 南极和北极有什么区别| 肾在五行中属什么| 晒伤擦什么药| 心理疾病吃什么药| 梦见鬼是什么意思| 梦见跑步是什么意思| 屁多且臭是什么原因| 成吉思汗是什么族| 利是什么生肖| 眼睛散光和近视有什么区别| 虾米是什么意思| 1950年属虎的是什么命| 花中君子是什么| 猫奴是什么意思| 月经量少要吃什么调理| 血热吃什么药快速见效| 雾霾是什么意思| 白癜风不能吃什么食物| 耷拉的近义词是什么| 什么东西不能托运| 隐匿是什么意思| 猛吸气胸口疼什么原因| 宝宝感冒吃什么药| 失眠吃什么药最有效| 舌头有裂纹是什么病| 经期头疼吃什么药效果最好| 萎缩性胃炎吃什么药能治好| 百度Jump to content

国道317线狮子坪电站库区改线公路工程进展顺利

From Wikipedia, the free encyclopedia
Schematic representation of the random spin structure of a spin glass (top) and the ordered one of a ferromagnet (bottom)
Amorphous SiO2
Glass (amorphous SiO2)
Crystalline SiO2)
Quartz (crystalline SiO2)
The magnetic disorder of spin glass compared to a ferromagnet is analogous to the positional disorder of glass (left) compared to quartz (right).
百度 巴西瓦加斯基金会国际关系专家奥利弗·施廷克尔表示,特朗普此举很大一部分动力在于兑现竞选承诺、取悦选民,以应对2018年国会中期选举。

In condensed matter physics, a spin glass is a magnetic state characterized by randomness, besides cooperative behavior in freezing of spins at a temperature called the "freezing temperature," Tf.[1] In ferromagnetic solids, component atoms' magnetic spins all align in the same direction. Spin glass when contrasted with a ferromagnet is defined as "disordered" magnetic state in which spins are aligned randomly or without a regular pattern and the couplings too are random.[1] A spin glass should not be confused with a "spin-on glass". The latter is a thin film, usually based on SiO2, which is applied via spin coating.

The term "glass" comes from an analogy between the magnetic disorder in a spin glass and the positional disorder of a conventional, chemical glass, e.g., a window glass. In window glass or any amorphous solid the atomic bond structure is highly irregular; in contrast, a crystal has a uniform pattern of atomic bonds. In ferromagnetic solids, magnetic spins all align in the same direction; this is analogous to a crystal's lattice-based structure.

The individual atomic bonds in a spin glass are a mixture of roughly equal numbers of ferromagnetic bonds (where neighbors have the same orientation) and antiferromagnetic bonds (where neighbors have exactly the opposite orientation: north and south poles are flipped 180 degrees). These patterns of aligned and misaligned atomic magnets create what are known as frustrated interactions – distortions in the geometry of atomic bonds compared to what would be seen in a regular, fully aligned solid. They may also create situations where more than one geometric arrangement of atoms is stable.

There are two main aspects of spin glass. On the physical side, spin glasses are real materials with distinctive properties, a review of which was published in 1982.[2] On the mathematical side, simple statistical mechanics models, inspired by real spin glasses, are widely studied and applied.[3]

Spin glasses and the complex internal structures that arise within them are termed "metastable" because they are "stuck" in stable configurations other than the lowest-energy configuration (which would be aligned and ferromagnetic). The mathematical complexity of these structures is difficult but fruitful to study experimentally or in simulations; with applications to physics, chemistry, materials science and artificial neural networks in computer science.

Magnetic behavior

[edit]

It is the time dependence which distinguishes spin glasses from other magnetic systems.

Above the spin glass transition temperature, Tc,[note 1] the spin glass exhibits typical magnetic behaviour (such as paramagnetism).

If a magnetic field is applied as the sample is cooled to the transition temperature, magnetization of the sample increases as described by the Curie law. Upon reaching Tc, the sample becomes a spin glass, and further cooling results in little change in magnetization. This is referred to as the field-cooled magnetization.

When the external magnetic field is removed, the magnetization of the spin glass falls rapidly to a lower value known as the remanent magnetization.

Magnetization then decays slowly as it approaches zero (or some small fraction of the original value – this remains unknown). This decay is non-exponential, and no simple function can fit the curve of magnetization versus time adequately.[4] This slow decay is particular to spin glasses. Experimental measurements on the order of days have shown continual changes above the noise level of instrumentation.[4]

Spin glasses differ from ferromagnetic materials by the fact that after the external magnetic field is removed from a ferromagnetic substance, the magnetization remains indefinitely at the remanent value. Paramagnetic materials differ from spin glasses by the fact that, after the external magnetic field is removed, the magnetization rapidly falls to zero, with no remanent magnetization. The decay is rapid and exponential.[citation needed]

If the sample is cooled below Tc in the absence of an external magnetic field, and a magnetic field is applied after the transition to the spin glass phase, there is a rapid initial increase to a value called the zero-field-cooled magnetization. A slow upward drift then occurs toward the field-cooled magnetization.

Surprisingly, the sum of the two complicated functions of time (the zero-field-cooled and remanent magnetizations) is a constant, namely the field-cooled value, and thus both share identical functional forms with time,[5] at least in the limit of very small external fields.

Edwards–Anderson model

[edit]

This is similar to the Ising model. In this model, we have spins arranged on a -dimensional lattice with only nearest neighbor interactions. This model can be solved exactly for the critical temperatures and a glassy phase is observed to exist at low temperatures.[6] The Hamiltonian for this spin system is given by:

where refers to the Pauli spin matrix for the spin-half particle at lattice point , and the sum over refers to summing over neighboring lattice points and . A negative value of denotes an antiferromagnetic type interaction between spins at points and . The sum runs over all nearest neighbor positions on a lattice, of any dimension. The variables representing the magnetic nature of the spin-spin interactions are called bond or link variables.

In order to determine the partition function for this system, one needs to average the free energy where , over all possible values of . The distribution of values of is taken to be a Gaussian with a mean and a variance :

Solving for the free energy using the replica method, below a certain temperature, a new magnetic phase called the spin glass phase (or glassy phase) of the system is found to exist which is characterized by a vanishing magnetization along with a non-vanishing value of the two point correlation function between spins at the same lattice point but at two different replicas:

where are replica indices. The order parameter for the ferromagnetic to spin glass phase transition is therefore , and that for paramagnetic to spin glass is again . Hence the new set of order parameters describing the three magnetic phases consists of both and .

Under the assumption of replica symmetry, the mean-field free energy is given by the expression:[6]

Sherrington–Kirkpatrick model

[edit]

In addition to unusual experimental properties, spin glasses are the subject of extensive theoretical and computational investigations. A substantial part of early theoretical work on spin glasses dealt with a form of mean-field theory based on a set of replicas of the partition function of the system.

An important, exactly solvable model of a spin glass was introduced by David Sherrington and Scott Kirkpatrick in 1975. It is an Ising model with long range frustrated ferro- as well as antiferromagnetic couplings. It corresponds to a mean-field approximation of spin glasses describing the slow dynamics of the magnetization and the complex non-ergodic equilibrium state.

Unlike the Edwards–Anderson (EA) model, in the system though only two-spin interactions are considered, the range of each interaction can be potentially infinite (of the order of the size of the lattice). Therefore, we see that any two spins can be linked with a ferromagnetic or an antiferromagnetic bond and the distribution of these is given exactly as in the case of Edwards–Anderson model. The Hamiltonian for SK model is very similar to the EA model:

where have same meanings as in the EA model. The equilibrium solution of the model, after some initial attempts by Sherrington, Kirkpatrick and others, was found by Giorgio Parisi in 1979 with the replica method. The subsequent work of interpretation of the Parisi solution—by M. Mezard, G. Parisi, M.A. Virasoro and many others—revealed the complex nature of a glassy low temperature phase characterized by ergodicity breaking, ultrametricity and non-selfaverageness. Further developments led to the creation of the cavity method, which allowed study of the low temperature phase without replicas. A rigorous proof of the Parisi solution has been provided in the work of Francesco Guerra and Michel Talagrand.[7]

Phase diagram

[edit]
de Almeida-Thouless curve.

When there is a uniform external magnetic field of magnitude , the energy function becomesLet all couplings are IID samples from the gaussian distribution of mean 0 and variance . In 1979, J.R.L. de Almeida and David Thouless[8] found that, as in the case of the Ising model, the mean-field solution to the SK model becomes unstable when under low-temperature, low-magnetic field state.

The stability region on the phase diagram of the SK model is determined by two dimensionless parameters . Its phase diagram has two parts, divided by the de Almeida-Thouless curve, The curve is the solution set to the equations[8]The phase transition occurs at . Just below it, we haveAt low temperature, high magnetic field limit, the line is

Infinite-range model

[edit]

This is also called the "p-spin model".[3] The infinite-range model is a generalization of the Sherrington–Kirkpatrick model where we not only consider two-spin interactions but -spin interactions, where and is the total number of spins. Unlike the Edwards–Anderson model, but similar to the SK model, the interaction range is infinite. The Hamiltonian for this model is described by:

where have similar meanings as in the EA model. The limit of this model is known as the random energy model. In this limit, the probability of the spin glass existing in a particular state depends only on the energy of that state and not on the individual spin configurations in it. A Gaussian distribution of magnetic bonds across the lattice is assumed usually to solve this model. Any other distribution is expected to give the same result, as a consequence of the central limit theorem. The Gaussian distribution function, with mean and variance , is given as:

The order parameters for this system are given by the magnetization and the two point spin correlation between spins at the same site , in two different replicas, which are the same as for the SK model. This infinite range model can be solved explicitly for the free energy[6] in terms of and , under the assumption of replica symmetry as well as 1-Replica Symmetry Breaking.[6]

Non-ergodic behavior and applications

[edit]

A thermodynamic system is ergodic when, given any (equilibrium) instance of the system, it eventually visits every other possible (equilibrium) state (of the same energy). One characteristic of spin glass systems is that, below the freezing temperature , instances are trapped in a "non-ergodic" set of states: the system may fluctuate between several states, but cannot transition to other states of equivalent energy. Intuitively, one can say that the system cannot escape from deep minima of the hierarchically disordered energy landscape; the distances between minima are given by an ultrametric, with tall energy barriers between minima.[note 2] The participation ratio counts the number of states that are accessible from a given instance, that is, the number of states that participate in the ground state. The ergodic aspect of spin glass was instrumental in the awarding of half the 2021 Nobel Prize in Physics to Giorgio Parisi.[9][10][11]

For physical systems, such as dilute manganese in copper, the freezing temperature is typically as low as 30 kelvins (?240 °C), and so the spin-glass magnetism appears to be practically without applications in daily life. The non-ergodic states and rugged energy landscapes are, however, quite useful in understanding the behavior of certain neural networks, including Hopfield networks, as well as many problems in computer science optimization and genetics.

Spin-glass without structural disorder

[edit]

Elemental crystalline neodymium is paramagnetic at room temperature and becomes an antiferromagnet with incommensurate order upon cooling below 19.9 K.[12] Below this transition temperature it exhibits a complex set of magnetic phases[13][14] that have long spin relaxation times and spin-glass behavior that does not rely on structural disorder.[15]

History

[edit]

A detailed account of the history of spin glasses from the early 1960s to the late 1980s can be found in a series of popular articles by Philip W. Anderson in Physics Today.[16][17][18][19][20][21][22][23]

Discovery

[edit]

In 1930s, material scientists discovered the Kondo effect, where the resistivity of nominally pure gold reaches a minimum at 10 K, and similarly for nominally pure Cu at 2 K. It was later understood that the Kondo effect occurs when a nonmagnetic metal contains a very small fraction of magnetic atoms (i.e., at high dilution).

Unusual behavior was observed in iron-in-gold alloy (AuFe) and manganese-in-copper alloy (CuMn) at around 1 to 10 atom percent. Cannella and Mydosh observed in 1972[24] that AuFe had an unexpected cusplike peak in the a.c. susceptibility at a well defined temperature, which would later be termed spin glass freezing temperature.[25]

It was also called "mictomagnet" (micto- is Greek for "mixed"). The term arose from the observation that these materials often contain a mix of ferromagnetic () and antiferromagnetic () interactions, leading to their disordered magnetic structure. This term fell out of favor as the theoretical understanding of spin glasses evolved, recognizing that the magnetic frustration arises not just from a simple mixture of ferro- and antiferromagnetic interactions, but from their randomness and frustration in the system.

Sherrington–Kirkpatrick model

[edit]

Sherrington and Kirkpatrick proposed the SK model in 1975, and solved it by the replica method.[26] They discovered that at low temperatures, its entropy becomes negative, which they thought was because the replica method is a heuristic method that does not apply at low temperatures.

It was then discovered that the replica method was correct, but the problem lies in that the low-temperature broken symmetry in the SK model cannot be purely characterized by the Edwards-Anderson order parameter. Instead, further order parameters are necessary, which leads to replica breaking ansatz of Giorgio Parisi. At the full replica breaking ansatz, infinitely many order parameters are required to characterize a stable solution.[27]

Applications

[edit]

The formalism of replica mean-field theory has also been applied in the study of neural networks, where it has enabled calculations of properties such as the storage capacity of simple neural network architectures without requiring a training algorithm (such as backpropagation) to be designed or implemented.[28]

More realistic spin glass models with short range frustrated interactions and disorder, like the Gaussian model where the couplings between neighboring spins follow a Gaussian distribution, have been studied extensively as well, especially using Monte Carlo simulations. These models display spin glass phases bordered by sharp phase transitions.

Besides its relevance in condensed matter physics, spin glass theory has acquired a strongly interdisciplinary character, with applications to neural network theory, computer science, theoretical biology, econophysics etc.

Spin glass models were adapted to the folding funnel model of protein folding.

See also

[edit]

Notes

[edit]
  1. ^ is identical to the so-called "freezing temperature"
  2. ^ The hierarchical disorder of the energy landscape may be verbally characterized by a single sentence: in this landscape there are "(random) valleys within still deeper (random) valleys within still deeper (random) valleys, ..., etc."

References

[edit]
  1. ^ a b Mydosh, J. A. (1993). Spin Glasses: An Experimental Introduction. London, Washington DC: Taylor & Francis. p. 3. ISBN 0748400389. 9780748400386.
  2. ^ Ford, Peter J. (March 1982). "Spin glasses". Contemporary Physics. 23 (2): 141–168. Bibcode:1982ConPh..23..141F. doi:10.1080/00107518208237073. ISSN 0010-7514.
  3. ^ a b Mézard, Marc; Montanari, Andrea (2009). Information, physics, and computation. Oxford graduate texts. Oxford: Oxford university press. ISBN 978-0-19-857083-7.
  4. ^ a b Joy, P. A.; Kumar, P. S. Anil; Date, S. K. (7 October 1998). "The relationship between field-cooled and zero-field-cooled susceptibilities of some ordered magnetic systems". J. Phys.: Condens. Matter. 10 (48): 11049–11054. Bibcode:1998JPCM...1011049J. doi:10.1088/0953-8984/10/48/024. S2CID 250734239.
  5. ^ Nordblad, P.; Lundgren, L.; Sandlund, L. (February 1986). "A link between the relaxation of the zero field cooled and the thermoremanent magnetizations in spin glasses". Journal of Magnetism and Magnetic Materials. 54–57 (1): 185–186. Bibcode:1986JMMM...54..185N. doi:10.1016/0304-8853(86)90543-3.
  6. ^ a b c d Nishimori, Hidetoshi (2001). Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford: Oxford University Press. p. 243. ISBN 9780198509400.
  7. ^ Talagrand, Michel (10 November 2010). Mean Field Models for Spin Glasses. Heidelberg: Springer Berlin. ISBN 978-3-642-15202-3. Retrieved 14 January 2025.
  8. ^ a b Almeida, J R L de; Thouless, D J (May 1978). "Stability of the Sherrington-Kirkpatrick solution of a spin glass model". Journal of Physics A: Mathematical and General. 11 (5): 983–990. Bibcode:1978JPhA...11..983D. doi:10.1088/0305-4470/11/5/028. ISSN 0305-4470.
  9. ^ Geddes, Linda (2025-08-05). "Trio of scientists win Nobel prize for physics for climate work". The Guardian. Retrieved 2025-08-05.
  10. ^ "Scientific Background for the Nobel Prize in Physics 2021" (PDF). Nobel Committee for Physics. 5 October 2021. Retrieved 3 November 2023.
  11. ^ Andrej Szytula; Janusz Leciejewicz (8 March 1994). Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics. CRC Press. p. 1. ISBN 978-0-8493-4261-5.
  12. ^ Zochowski, S W; McEwen, K A; Fawcett, E (1991). "Magnetic phase diagrams of neodymium". Journal of Physics: Condensed Matter. 3 (41): 8079–8094. Bibcode:1991JPCM....3.8079Z. doi:10.1088/0953-8984/3/41/007. ISSN 0953-8984.
  13. ^ Lebech, B; Wolny, J; Moon, R M (1994). "Magnetic phase transitions in double hexagonal close packed neodymium metal-commensurate in two dimensions". Journal of Physics: Condensed Matter. 6 (27): 5201–5222. Bibcode:1994JPCM....6.5201L. doi:10.1088/0953-8984/6/27/029. ISSN 0953-8984.
  14. ^ Kamber, Umut; Bergman, Anders; Eich, Andreas; Iu?an, Diana; Steinbrecher, Manuel; Hauptmann, Nadine; Nordstr?m, Lars; Katsnelson, Mikhail I.; Wegner, Daniel; Eriksson, Olle; Khajetoorians, Alexander A. (2020). "Self-induced spin glass state in elemental and crystalline neodymium". Science. 368 (6494). arXiv:1907.02295. doi:10.1126/science.aay6757. ISSN 0036-8075. PMID 32467362.
  15. ^ Philip W. Anderson (1988). "Spin Glass I: A Scaling Law Rescued" (PDF). Physics Today. 41 (1): 9–11. Bibcode:1988PhT....41a...9A. doi:10.1063/1.2811268.
  16. ^ Philip W. Anderson (1988). "Spin Glass II: Is There a Phase Transition?" (PDF). Physics Today. 41 (3): 9. Bibcode:1988PhT....41c...9A. doi:10.1063/1.2811336.
  17. ^ Philip W. Anderson (1988). "Spin Glass III: Theory Raises its Head" (PDF). Physics Today. 41 (6): 9–11. Bibcode:1988PhT....41f...9A. doi:10.1063/1.2811440.
  18. ^ Philip W. Anderson (1988). "Spin Glass IV: Glimmerings of Trouble" (PDF). Physics Today. 41 (9): 9–11. Bibcode:1988PhT....41i...9A. doi:10.1063/1.881135.
  19. ^ Philip W. Anderson (1989). "Spin Glass V: Real Power Brought to Bear" (PDF). Physics Today. 42 (7): 9–11. Bibcode:1989PhT....42g...9A. doi:10.1063/1.2811073.
  20. ^ Philip W. Anderson (1989). "Spin Glass VI: Spin Glass As Cornucopia" (PDF). Physics Today. 42 (9): 9–11. Bibcode:1989PhT....42i...9A. doi:10.1063/1.2811137.
  21. ^ Philip W. Anderson (1990). "Spin Glass VII: Spin Glass as Paradigm" (PDF). Physics Today. 43 (3): 9–11. Bibcode:1990PhT....43c...9A. doi:10.1063/1.2810479.
  22. ^ All of them combined.
  23. ^ Cannella, V.; Mydosh, J. A. (2025-08-05). "Magnetic Ordering in Gold-Iron Alloys". Physical Review B. 6 (11): 4220–4237. Bibcode:1972PhRvB...6.4220C. doi:10.1103/PhysRevB.6.4220.
  24. ^ Mulder, C. A. M.; van Duyneveldt, A. J.; Mydosh, J. A. (2025-08-05). "Susceptibility of the $\mathrm{Cu}\mathrm{Mn}$ spin-glass: Frequency and field dependences". Physical Review B. 23 (3): 1384–1396. doi:10.1103/PhysRevB.23.1384.
  25. ^ Sherrington, David; Kirkpatrick, Scott (2025-08-05). "Solvable Model of a Spin-Glass". Physical Review Letters. 35 (26): 1792–1796. Bibcode:1975PhRvL..35.1792S. doi:10.1103/physrevlett.35.1792. ISSN 0031-9007.
  26. ^ Parisi, G. (2025-08-05). "Infinite Number of Order Parameters for Spin-Glasses". Physical Review Letters. 43 (23): 1754–1756. Bibcode:1979PhRvL..43.1754P. doi:10.1103/PhysRevLett.43.1754. ISSN 0031-9007.
  27. ^ Gardner, E; Deridda, B (7 January 1988). "Optimal storage properties of neural network models" (PDF). J. Phys. A. 21 (1): 271. Bibcode:1988JPhA...21..271G. doi:10.1088/0305-4470/21/1/031.

Literature

[edit]

Expositions

[edit]

Primary sources

[edit]
[edit]
怪是什么意思 脸上起红疙瘩是什么原因 婴儿补铁吃什么铁剂 软冷冻室一般放什么东西 嗓子有异物感堵得慌吃什么药
女性胆固醇高吃什么 非食健字是什么意思 吃什么能补雌激素 露营需要准备什么东西 疤痕增生是什么引起的
雄性激素过高是什么原因 偏光太阳镜是什么意思 女生男相的是什么命 前列腺炎中医叫什么病 孙尚香字什么
夏至是什么时候 甲亢查什么项目 鸡眼长什么样子 子宫肌瘤都有什么症状 什么是川崎病
大姨妈是什么hcv9jop0ns1r.cn CA是什么激素hcv9jop6ns6r.cn 内蒙有什么特产hebeidezhi.com 没有了晨勃是什么原因1949doufunao.com 疗养是什么意思hcv9jop5ns0r.cn
梦见到处都是蛇预示着什么hcv9jop1ns1r.cn 5月26日是什么星座hcv8jop2ns8r.cn ab制是什么意思hcv9jop5ns3r.cn 6月16日是什么日子0297y7.com 血色素低吃什么补得快hcv9jop5ns1r.cn
1963年五行属什么hcv9jop1ns0r.cn 吃卡培他滨禁止吃什么hcv9jop5ns2r.cn 什么时间吃水果比较好xianpinbao.com 嘴巴很臭是什么原因引起的hcv8jop1ns7r.cn 腰疼是什么原因引起的hcv9jop4ns0r.cn
性质是什么hcv7jop5ns0r.cn 亚是什么意思kuyehao.com 润肺吃什么hcv9jop5ns3r.cn 乐得什么填词语hcv8jop9ns4r.cn 脑血管堵塞吃什么药hcv8jop5ns7r.cn
百度