一醉方休下一句是什么| 发烧吃什么| 高考报名号是什么| 爱做梦是什么原因应该怎样调理| 小时的单位是什么| nbr是什么材质| 心脏跳的快什么原因| 市组织部长是什么级别| 生活方式是什么意思| 睾丸是什么| 总感觉饿是什么原因| 火象是什么意思| k代表什么| 互粉是什么意思| 正师级是什么军衔| 虎配什么生肖最好| 摩尔每升是什么单位| 右肋骨疼是什么原因| 名不见经传是什么意思| 伸什么缩什么| 豌豆是什么豆| 脑心通主治什么病| 97年属什么生肖| 肩周炎是什么引起的| 无水酥油是什么| 什么叫钝痛| 全国政协常委什么级别| 什么是三位一体| 梦见刺猬是什么意思| 什么的时间| 旱魃是什么| 书中自有颜如玉什么意思| 30如狼40如虎是什么意思| 断头路是什么意思| 欣喜若狂的近义词是什么| biu是什么意思| 早上起来嘴苦口臭是什么原因| 狗狗感冒了是什么症状| 身上长瘊子是什么原因| 治未病科是看什么病的| 1222是什么星座| 高危妊娠监督什么意思| 用什么药材泡酒最好| 鼻塞是什么原因| 马眼是什么| 世界7大奇迹是什么| 什么叫有个性的人| 6月19什么星座| 梦见抬棺材是什么意思| 咳嗽是什么原因引起的| 西红柿和什么榨汁减肥| 足底麻木是什么原因| 电气火灾用什么灭火器| 清考是什么意思| 为什么会得玫瑰糠疹| 牛油是什么油| 暗里着迷什么意思| 查微量元素挂什么科| 左肾囊性灶是什么意思| 桑葚酒有什么功效| 巴基斯坦人说什么语言| 爆菊什么意思| 什么叫电子版照片| 脚抽筋什么原因| 南瓜吃了有什么好处| 8023是什么意思啊| 西藏有什么大学| 什么减肥好| slay什么意思| 倒数第二颗牙齿叫什么| 什么水果清热解毒去火| 便秘喝什么茶润肠通便| 酚氨咖敏片的别名叫什么| 干红是什么意思| 梦见猫是什么预兆| jm是什么| 心态好是什么意思| 水疗是什么意思| 淋巴系统由什么组成| 什么东西人们都不喜欢吃| 出生证号是什么| 口蘑不能和什么一起吃| 尿酸挂什么科| 阳性阴性是什么意思| 三维和四维有什么区别| img什么意思| 无创是什么| 九寨沟什么时候去最好| 四百多分能上什么大学| 五月二十是什么星座| 急性荨麻疹用什么药| 尿臭是什么病| 爱长闭口用什么护肤品| 美仑美奂什么意思| 舌苔发白是什么症状| 梦见打老公是什么意思| 肾积水有什么危害| 猪脚炖什么好吃| 经常手麻是什么原因引起的| 百香果是什么季节的| 枕大神经痛吃什么药| 直立倾斜试验阳性是什么病| package什么意思| 祚是什么意思| 抽烟是什么感觉| 吃香菜有什么好处| 宫颈糜烂是什么原因造成的| 陨石有什么作用和功效| 柠檬有什么功效和作用| 锦鲤吃什么| 什么品种的芒果最好吃| 什么牌子的奶粉好| 宝姿是什么档次的牌子| 茶寿为什么是108岁| 内膜厚是什么原因引起的| 孕妇不吃饭对胎儿有什么影响| 血脂高吃什么药效果好| 贺喜是什么意思| 吃什么睡眠好的最快最有效| 哪吒为什么叫哪吒| 一什么湖面| 犹太人是什么人| 菊花的功效是什么| 什么是主动脉夹层| 膑是什么意思| 一什么不什么的成语| 三点水翟读什么| 情人节送什么| 绾色是什么颜色| 空调风扇不转是什么原因| 阴囊潮湿用什么药| 肺痈是什么意思| 女性做B超挂什么科| 小猫吃什么东西| 区委书记属于什么级别| 小虾吃什么| 蜂蜜有什么功效和作用| 假象是什么意思| 槐花什么时候开花| 捡到鹦鹉是什么预兆| 十月初一是什么节| 8.11是什么星座| ne医学上是什么意思| 什么流砥柱| 早上起来眼皮肿是什么原因| 女人吃芡实有什么好处| 心肌劳损的症状是什么| 肺气虚吃什么药| 核桃和什么一起打豆浆| 高血压和高血脂有什么区别| 难能可贵是什么意思| 身上痒是什么原因| 阉割是什么意思| 尿黄尿味大难闻是什么原因| 每次上大便都出血是什么原因| 四两拨千斤是什么意思| 12月1日是什么意思| 妇科活检是什么意思| 梦见很多蜜蜂是什么意思| 氧氟沙星和诺氟沙星有什么区别| 自贸区是什么意思| 条件兵是什么意思| 蛇鼠一窝什么意思| burgundy是什么颜色| 耳膜穿孔吃什么长得快| 130是什么意思| 过的第五笔是什么| 舌尖有点麻是什么原因| 顾字五行属什么| 梦见自己相亲是什么征兆| 琛字五行属什么| 喜乐是什么意思| 莲子吃了有什么好处| 蜗牛什么梗| 兔子为什么不吃窝边草| 隐忍是什么意思| 菠萝蜜不能和什么一起吃| 心脏病吃什么食物好| fq交友是什么意思| 眉梢有痣代表什么| pla是什么意思| 内裤发黄是什么妇科病| 月的偏旁有什么字| 什么是色盲| 洗面奶什么好| 头孢是治疗什么病的| CRL是胎儿的什么意思| 血色素低吃什么补得快| 衣原体阳性是什么意思| 肩膀骨头响是什么原因| 生二胎需要什么手续| 万里长城是什么生肖| 虹字五行属什么| 痛风吃什么药最有效| 狐臭什么味| 流鼻子打喷嚏吃什么药| 羊肉饺子馅配什么蔬菜最好吃| 拉黑和删除有什么区别| 梦见被蛇追着咬是什么意思| 什么叫混合斑块| 什么终于什么造句| 什么时间人流| 手指麻木是什么原因| 音召念什么| 豆油什么牌子的好| 全自动洗衣机不脱水是什么原因| 初一的月亮是什么形状| 佛法无边是什么生肖| 豪爽是什么意思| 避孕药吃多了有什么副作用| 手外科属于什么科| 蝙蝠是什么类| 猪血炒什么好吃| 蝴蝶骨是什么| 甲骨文是什么朝代的| 小候鸟是什么意思| 从从容容的意思是什么| 端午节都吃什么菜好| 神经性头痛吃什么药| 寸关尺代表什么器官| ccb是什么药物| 贾珍和贾政是什么关系| 小腿出汗是什么原因| 老是放屁吃什么药| 大便酸臭味是什么原因| 什么品牌的卫浴好| 梦见诈尸预示什么| 桂枝和肉桂有什么区别| 小孩睡觉说梦话是什么原因| 去韩国需要办理什么手续| 中旬是什么意思| 育婴员是做什么的| 旁风草长什么样| 感冒流清鼻涕吃什么药| 阳性阴性是什么意思| 偶发房性早搏是什么意思| 肾动脉狭窄有什么症状| 枸杞什么时候吃最好| 钙对人体有什么作用| 洋辣子蛰了用什么药| 门对门风水有什么说法| 不什么好什么| exo是什么意思啊| 为什么会长斑| 拉肚子发热是什么情况| 药流后吃什么消炎药比较好| 梦见死人的场面是什么兆头| 香奈儿是什么品牌| 吃什么药可以延长性功能| 鲜黄花菜含有什么毒素| 暗代表什么生肖| bj是什么| store是什么| 智齿是什么意思| 大白话是什么意思| 什么人容易得心理疾病| 国历是什么意思| 慎什么意思| 过生日送什么礼物好| 潇字五行属什么| 心脏反流吃什么药| 咳嗽恶心干呕是什么原因引起的| fte是什么意思| 莲雾是什么| 百度Jump to content

上海民众走近“让文物活起来”的工匠 体验文物修复

From Wikipedia, the free encyclopedia
Solid angle
Visual representation of a solid angle
Common symbols
Ω
SI unitsteradian
Other units
Square degree, spat (angular unit)
In SI base unitsm2/m2
Conserved?No
Derivations from
other quantities
Dimension
百度 (吴思盈)(责编:邹宇轩(实习生)、张雨)

In geometry, a solid angle (symbol: Ω) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

In the International System of Units (SI), a solid angle is expressed in a dimensionless unit called a steradian (symbol: sr), which is equal to one square radian, sr = rad2. One steradian corresponds to one unit of area (of any shape) on the unit sphere surrounding the apex, so an object that blocks all rays from the apex would cover a number of steradians equal to the total surface area of the unit sphere, . Solid angles can also be measured in squares of angular measures such as degrees, minutes, and seconds.

A small object nearby may subtend the same solid angle as a larger object farther away. For example, although the Moon is much smaller than the Sun, it is also much closer to Earth. Indeed, as viewed from any point on Earth, both objects have approximately the same solid angle (and therefore apparent size). This is evident during a solar eclipse.

Definition and properties

[edit]

The magnitude of an object's solid angle in steradians is equal to the area of the segment of a unit sphere, centered at the apex, that the object covers. Giving the area of a segment of a unit sphere in steradians is analogous to giving the length of an arc of a unit circle in radians. Just as the magnitude of a plane angle in radians at the vertex of a circular sector is the ratio of the length of its arc to its radius, the magnitude of a solid angle in steradians is the ratio of the area covered on a sphere by an object to the square of the radius of the sphere. The formula for the magnitude of the solid angle in steradians is

where is the area (of any shape) on the surface of the sphere and is the radius of the sphere.

Solid angles are often used in astronomy, physics, and in particular astrophysics. The solid angle of an object that is very far away is roughly proportional to the ratio of area to squared distance. Here "area" means the area of the object when projected along the viewing direction.

Any area on a sphere which is equal in area to the square of its radius, when observed from its center, subtends precisely one steradian.

The solid angle of a sphere measured from any point in its interior is 4π sr. The solid angle subtended at the center of a cube by one of its faces is one-sixth of that, or 2π/3  sr. The solid angle subtended at the corner of a cube (an octant) or spanned by a spherical octant is π/2  sr, one-eighth of the solid angle of a sphere.

Solid angles can also be measured in square degrees (1 sr = (180/π)2 square degrees), in square arc-minutes and square arc-seconds.[a] It can also be expressed in fractions of the sphere (1 sr = ?1/4π? fractional area), also known as spat (1 sp = 4π sr).

In spherical coordinates there is a formula for the differential,

where θ is the colatitude (angle from the North Pole) and φ is the longitude.

The solid angle for an arbitrary oriented surface S subtended at a point P is equal to the solid angle of the projection of the surface S to the unit sphere with center P, which can be calculated as the surface integral:

where is the unit vector corresponding to , the position vector of an infinitesimal area of surface dS with respect to point P, and where represents the unit normal vector to dS. Even if the projection on the unit sphere to the surface S is not isomorphic, the multiple folds are correctly considered according to the surface orientation described by the sign of the scalar product .

Thus one can approximate the solid angle subtended by a small facet having flat surface area dS, orientation , and distance r from the viewer as:

where the surface area of a sphere is A = 4πr2.

Practical applications

[edit]

Solid angles for common objects

[edit]

Cone, spherical cap, hemisphere

[edit]
Diagram showing a section through the centre of a cone (1) subtending a solid angle of 1 steradian in a sphere of radius r, along with the spherical "cap" (2). The external surface area A of the cap equals only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A/2 and r = 1.

The solid angle of a cone with its apex at the apex of the solid angle, and with apex angle 2θ, is the area of a spherical cap on a unit sphere

For small θ such that cos θ ≈ 1 ? ?θ2/2? this reduces to πθ2 ≈ πr2, the area of a circle. (As h → 0, θ → r.)

The above is found by computing the following double integral using the unit surface element in spherical coordinates:

This formula can also be derived without the use of calculus.

Over 2200 years ago Archimedes proved that the surface area of a spherical cap is always equal to the area of a circle whose radius equals the distance from the rim of the spherical cap to the point where the cap's axis of symmetry intersects the cap.[2]

Archimedes' theorem that surface area of the region of sphere below horizontal plane H in given diagram is equal to area of a circle of radius t.

In the above coloured diagram this radius is given as

In the adjacent black & white diagram this radius is given as "t".

Hence for a unit sphere the solid angle of the spherical cap is given as

When θ = ?π/2?, the spherical cap becomes a hemisphere having a solid angle 2π.

The solid angle of the complement of the cone is

This is also the solid angle of the part of the celestial sphere that an astronomical observer positioned at latitude θ can see as the Earth rotates. At the equator all of the celestial sphere is visible; at either pole, only one half.

The solid angle subtended by a segment of a spherical cap cut by a plane at angle γ from the cone's axis and passing through the cone's apex can be calculated by the formula[3]

For example, if γ = ?θ, then the formula reduces to the spherical cap formula above: the first term becomes π, and the second π cos θ.

Tetrahedron

[edit]

Let OABC be the vertices of a tetrahedron with an origin at O subtended by the triangular face ABC where are the vector positions of the vertices A, B and C. Define the vertex angle θa to be the angle BOC and define θb, θc correspondingly. Let be the dihedral angle between the planes that contain the tetrahedral faces OAC and OBC and define , correspondingly. The solid angle Ω subtended by the triangular surface ABC is given by

This follows from the theory of spherical excess and it leads to the fact that there is an analogous theorem to the theorem that "The sum of internal angles of a planar triangle is equal to π", for the sum of the four internal solid angles of a tetrahedron as follows:

where ranges over all six of the dihedral angles between any two planes that contain the tetrahedral faces OAB, OAC, OBC and ABC.[4]

A useful formula for calculating the solid angle of the tetrahedron at the origin O that is purely a function of the vertex angles θa, θb, θc is given by L'Huilier's theorem[5][6] as

where

Another interesting formula involves expressing the vertices as vectors in 3 dimensional space. Let be the vector positions of the vertices A, B and C, and let a, b, and c be the magnitude of each vector (the origin-point distance). The solid angle Ω subtended by the triangular surface ABC is:[7][8]

where

denotes the scalar triple product of the three vectors and denotes the scalar product.

Care must be taken here to avoid negative or incorrect solid angles. One source of potential errors is that the scalar triple product can be negative if a, b, c have the wrong winding. Computing the absolute value is a sufficient solution since no other portion of the equation depends on the winding. The other pitfall arises when the scalar triple product is positive but the divisor is negative. In this case returns a negative value that must be increased by π.

Pyramid

[edit]

The solid angle of a four-sided right rectangular pyramid with apex angles a and b (dihedral angles measured to the opposite side faces of the pyramid) is

If both the side lengths (α and β) of the base of the pyramid and the distance (d) from the center of the base rectangle to the apex of the pyramid (the center of the sphere) are known, then the above equation can be manipulated to give

The solid angle of a right n-gonal pyramid, where the pyramid base is a regular n-sided polygon of circumradius r, with a pyramid height h is

The solid angle of an arbitrary pyramid with an n-sided base defined by the sequence of unit vectors representing edges {s1, s2}, ... sn can be efficiently computed by:[3]

where parentheses (* *) is a scalar product and square brackets [* * *] is a scalar triple product, and i is an imaginary unit. Indices are cycled: s0 = sn and s1 = sn + 1. The complex products add the phase associated with each vertex angle of the polygon. However, a multiple of is lost in the branch cut of and must be kept track of separately. Also, the running product of complex phases must scaled occasionally to avoid underflow in the limit of nearly parallel segments.

Latitude-longitude rectangle

[edit]

The solid angle of a latitude-longitude rectangle on a globe is where φN and φS are north and south lines of latitude (measured from the equator in radians with angle increasing northward), and θE and θW are east and west lines of longitude (where the angle in radians increases eastward).[9] Mathematically, this represents an arc of angle ?N ? ?S swept around a sphere by θE ? θW radians. When longitude spans 2π radians and latitude spans π radians, the solid angle is that of a sphere.

A latitude-longitude rectangle should not be confused with the solid angle of a rectangular pyramid. All four sides of a rectangular pyramid intersect the sphere's surface in great circle arcs. With a latitude-longitude rectangle, only lines of longitude are great circle arcs; lines of latitude are not.

Celestial objects

[edit]

By using the definition of angular diameter, the formula for the solid angle of a celestial object can be defined in terms of the radius of the object, , and the distance from the observer to the object, :

By inputting the appropriate average values for the Sun and the Moon (in relation to Earth), the average solid angle of the Sun is 6.794×10?5 steradians and the average solid angle of the Moon is 6.418×10?5 steradians. In terms of the total celestial sphere, the Sun and the Moon subtend average fractional areas of 0.0005406% (5.406 ppm) and 0.0005107% (5.107 ppm), respectively. As these solid angles are about the same size, the Moon can cause both total and annular solar eclipses depending on the distance between the Earth and the Moon during the eclipse.

Solid angles in arbitrary dimensions

[edit]

The solid angle subtended by the complete (d ? 1)-dimensional spherical surface of the unit sphere in d-dimensional Euclidean space can be defined in any number of dimensions d. One often needs this solid angle factor in calculations with spherical symmetry. It is given by the formula where Γ is the gamma function. When d is an integer, the gamma function can be computed explicitly.[10] It follows that

This gives the expected results of 4π steradians for the 3D sphere bounded by a surface of area r2 and 2π radians for the 2D circle bounded by a circumference of length r. It also gives the slightly less obvious 2 for the 1D case, in which the origin-centered 1D "sphere" is the interval [?r, r] and this is bounded by two limiting points.

The counterpart to the vector formula in arbitrary dimension was derived by Aomoto[11][12] and independently by Ribando.[13] It expresses them as an infinite multivariate Taylor series: Given d unit vectors defining the angle, let V denote the matrix formed by combining them so the ith column is , and . The variables form a multivariable . For a "congruent" integer multiexponent define . Note that here = non-negative integers, or natural numbers beginning with 0. The notation for means the variable , similarly for the exponents . Hence, the term means the sum over all terms in in which l appears as either the first or second index. Where this series converges, it converges to the solid angle defined by the vectors.

Notes

[edit]
  1. ^ The whole sphere contains ~148.510 million square arcminutes and ~534.638 billion square arcseconds.[citation needed]

References

[edit]
  1. ^ Falla, Romain (2023). "Mesh adaption for two-dimensional bounded and free-surface flows with the particle finite element method". Computational Particle Mechanics. 10 (5): 1049–1076. doi:10.1007/s40571-022-00541-2.
  2. ^ "Archimedes on Spheres and Cylinders". Math Pages. 2015.
  3. ^ a b Mazonka, Oleg (2012). "Solid Angle of Conical Surfaces, Polyhedral Cones, and Intersecting Spherical Caps". arXiv:1205.1396 [math.MG].
  4. ^ Hopf, Heinz (1940). "Selected Chapters of Geometry" (PDF). ETH Zurich: 1–2. Archived (PDF) from the original on 2025-08-05.
  5. ^ "L'Huilier's Theorem – from Wolfram MathWorld". Mathworld.wolfram.com. 2025-08-05. Retrieved 2025-08-05.
  6. ^ "Spherical Excess – from Wolfram MathWorld". Mathworld.wolfram.com. 2025-08-05. Retrieved 2025-08-05.
  7. ^ Eriksson, Folke (1990). "On the measure of solid angles". Mathematics Magazine. 63 (3): 184–187. doi:10.2307/2691141. JSTOR 2691141.
  8. ^ Van Oosterom, A; Strackee, J (1983). "The Solid Angle of a Plane Triangle". IEEE Transactions on Biomedical Engineering. BME-30 (2): 125–126. doi:10.1109/TBME.1983.325207. PMID 6832789.
  9. ^ "Area of a Latitude-Longitude Rectangle". The Math Forum @ Drexel. 2003.
  10. ^ Jackson, FM (1993). "Polytopes in Euclidean n-space". Bulletin of the Institute of Mathematics and Its Applications. 29 (11/12): 172–174.
  11. ^ Aomoto, Kazuhiko (1977). "Analytic structure of Schl?fli function". Nagoya Math. J. 68: 1–16. doi:10.1017/s0027763000017839.
  12. ^ Beck, M.; Robins, S.; Sam, S. V. (2010). "Positivity theorems for solid-angle polynomials". Contributions to Algebra and Geometry. 51 (2): 493–507. arXiv:0906.4031.
  13. ^ Ribando, Jason M. (2006). "Measuring Solid Angles Beyond Dimension Three". Discrete & Computational Geometry. 36 (3): 479–487. doi:10.1007/s00454-006-1253-4.

Further reading

[edit]
  • Jaffey, A. H. (1954). "Solid angle subtended by a circular aperture at point and spread sources: formulas and some tables". Rev. Sci. Instrum. 25 (4): 349–354. doi:10.1063/1.1771061.
  • Masket, A. Victor (1957). "Solid angle contour integrals, series, and tables". Rev. Sci. Instrum. 28 (3): 191. doi:10.1063/1.1746479.
  • Naito, Minoru (1957). "A method of calculating the solid angle subtended by a circular aperture". J. Phys. Soc. Jpn. 12 (10): 1122–1129. doi:10.1143/JPSJ.12.1122.
  • Paxton, F. (1959). "Solid angle calculation for a circular disk". Rev. Sci. Instrum. 30 (4): 254. doi:10.1063/1.1716590.
  • Khadjavi, A. (1968). "Calculation of solid angle subtended by rectangular apertures". J. Opt. Soc. Am. 58 (10): 1417–1418. doi:10.1364/JOSA.58.001417.
  • Gardner, R. P.; Carnesale, A. (1969). "The solid angle subtended at a point by a circular disk". Nucl. Instrum. Methods. 73 (2): 228–230. doi:10.1016/0029-554X(69)90214-6.
  • Gardner, R. P.; Verghese, K. (1971). "On the solid angle subtended by a circular disk". Nucl. Instrum. Methods. 93 (1): 163–167. doi:10.1016/0029-554X(71)90155-8.
  • Gotoh, H.; Yagi, H. (1971). "Solid angle subtended by a rectangular slit". Nucl. Instrum. Methods. 96 (3): 485–486. doi:10.1016/0029-554X(71)90624-0.
  • Cook, J. (1980). "Solid angle subtended by a two rectangles". Nucl. Instrum. Methods. 178 (2–3): 561–564. doi:10.1016/0029-554X(80)90838-1.
  • Asvestas, John S..; Englund, David C. (1994). "Computing the solid angle subtended by a planar figure". Opt. Eng. 33 (12): 4055–4059. doi:10.1117/12.183402. Erratum ibid. vol 50 (2011) page 059801.
  • Tryka, Stanislaw (1997). "Angular distribution of the solid angle at a point subtended by a circular disk". Opt. Commun. 137 (4–6): 317–333. doi:10.1016/S0030-4018(96)00789-4.
  • Prata, M. J. (2004). "Analytical calculation of the solid angle subtended by a circular disc detector at a point cosine source". Nucl. Instrum. Methods Phys. Res. A. 521 (2–3): 576. arXiv:math-ph/0305034. doi:10.1016/j.nima.2003.10.098.
  • Timus, D. M.; Prata, M. J.; Kalla, S. L.; Abbas, M. I.; Oner, F.; Galiano, E. (2007). "Some further analytical results on the solid angle subtended at a point by a circular disk using elliptic integrals". Nucl. Instrum. Methods Phys. Res. A. 580: 149–152. doi:10.1016/j.nima.2007.05.055.
[edit]
  • Arthur P. Norton, A Star Atlas, Gall and Inglis, Edinburgh, 1969.
  • M. G. Kendall, A Course in the Geometry of N Dimensions, No. 8 of Griffin's Statistical Monographs & Courses, ed. M. G. Kendall, Charles Griffin & Co. Ltd, London, 1961
  • Weisstein, Eric W. "Solid Angle". MathWorld.
哆啦a梦的口袋叫什么 血小板为什么会减少 spc是什么意思 什么的生长 丝状疣用什么药
煎饼果子的果子是什么 爱啃指甲是什么原因 什么情况做肠镜 上大便出血是什么原因 picc是什么
水潴留是什么意思 剥苔舌是什么原因 嬲是什么意思 镜片什么材质好 偷鸡不成蚀把米是什么生肖
9月12是什么星座 儿童包皮手术挂什么科 止鼾什么方法最有效 大连机场叫什么 中气不足是什么意思
偶尔心慌是什么原因hcv9jop4ns2r.cn 什么人容易得血栓sscsqa.com 灵芝有什么好处hcv7jop5ns5r.cn 同房子宫疼痛什么原因hcv8jop5ns2r.cn 查肾功能需要做什么检查hcv7jop5ns0r.cn
谢霆锋什么学历hcv7jop4ns7r.cn 俗不可耐是什么意思hcv9jop5ns2r.cn 榕字五行属什么hcv8jop5ns7r.cn 结膜炎用什么眼药水效果好travellingsim.com 驾照c2能开什么车sanhestory.com
儿童肺炎吃什么药hcv9jop2ns2r.cn 女人切除子宫有什么影响qingzhougame.com 什么空调最省电hcv9jop2ns0r.cn 燃气泄露是什么味道hcv9jop0ns9r.cn 12月24是什么星座hcv9jop6ns2r.cn
不是月经期出血是什么原因hcv7jop5ns6r.cn 宝宝什么意思hcv9jop2ns1r.cn 黄豆什么时候种hcv9jop2ns7r.cn 吃什么最补血hcv9jop2ns4r.cn 孩子气是什么意思hcv8jop5ns7r.cn
百度