减肥最快的运动是什么运动| 无偿献血证有什么用| 言字五行属什么| 疏肝解郁吃什么药| 孕妇建档需要检查什么| 塌陷是什么意思| 2026年属什么生肖| 小青龙是什么龙虾| 为什么打嗝| 白细胞加号什么意思| 男人吃西红柿有什么好处| 幽门螺旋杆菌是什么病| 生理曲度变直什么意思| 忌诸事不宜什么意思| 考试前不能吃什么| 沟壑是什么意思| 孩子咳嗽吃什么药效果好| 口大是什么字| 金字旁加者念什么| 医保卡是什么| b是什么单位| 耳朵软骨疼是什么原因| 手外科属于什么科| 易激惹是什么意思| 肥皂剧是什么意思| 甲亢是什么原因造成的| 气虚用什么泡水喝好| 小鹅吃什么| 眼睛痒吃什么药| 3月15号是什么星座| 上午右眼皮跳什么预兆| MP是什么| 袋鼠喜欢吃什么食物| 朴实无华是什么意思| 红楼梦为什么叫石头记| 窥视是什么意思| 脑白质疏松是什么病| 情趣是什么| 心脏早搏是什么症状| 韩语欧巴是什么意思| 白带发黄有异味用什么药| 壬字五行属什么| 什么是尿毒症| 电脑一体机什么牌子好| 眼睛痛是什么病| 灼热感是什么样的感觉| 梦见弟媳妇是什么预兆| 六月二十日是什么日子| 香醋是什么醋| 盛世美颜是什么意思| 钢琴8级什么水平| 走马观花是什么意思| 安宫丸什么时候吃效果是最佳的| 6.30是什么星座| 起大运是什么意思| 精囊腺囊肿是什么意思| 小便发黄什么原因| 三个龙读什么| 幻听一般会听到什么| 玩游戏有什么好处| 什么是扦插| 边缘化是什么意思| 无犯罪证明需要什么材料| 想什么来什么是什么定律| 腰胀是什么原因引起的| 凝血四项是查什么的| 眩晕症吃什么好| 退休工资什么时候补发| 黄牛票是什么意思| 布衣蔬食是什么意思| 什么是色拉油| 痔疮什么样子图片| 咏字五行属什么| 酒后吃什么解酒最快| 拔完罐需要注意什么| 市辖区是什么意思| 魔芋丝是什么做的| 伤口发炎用什么药| 利多卡因是什么| 洋葱可以炒什么| soso什么意思| 雷字五行属什么| 心脏不舒服做什么检查| 什么是梭织面料| 11月8日是什么星座| 左传是一部什么体史书| 孕妇头疼是什么原因| 金牛座属于什么象星座| 吃奇亚籽有什么好处| 榴莲吃了对身体有什么好处| 沙门是什么意思| 时蔬是什么意思| pd1是什么意思| 减脂喝什么茶最有效| 狐臭用什么药| 口头禅什么意思| 晚上9点到11点是什么时辰| 强回声斑块是什么意思| 黄花苗泡水喝有什么作用| pap是什么意思| 肺不好的人吃什么好| 秦始皇是什么民族| 总出虚汗什么原因怎么解决| 靖五行属性是什么| 你是什么意思| 空心菜又叫什么菜| 清洁度三度是什么炎症| 咳嗽发烧吃什么药| 松花蛋是什么蛋做的| 肉瘤是什么样子图片| 反流性食管炎吃什么中成药| 什么粉一沾就痒还看不出来| 为什么当警察| 请问支气管炎吃什么药最有效| bell什么意思| 输氨基酸对身体有什么好处和坏处| 赖是什么意思| 长疮是什么原因| 咳嗽用什么药| 晴字五行属什么| 肝内强回声是什么意思| 拔罐颜色深浅代表什么| 怀孕两个月出血是什么原因| 引火上身是什么意思| 恙是什么意思| 手淫什么意思| 用白醋泡脚有什么好处| 女生是什么意思| 黄芪泡水有什么好处| 布病什么症状| 梦见涨水是什么兆头| ltp什么意思| 眼球有黑色斑点是什么| 小孩突然头疼是什么原因| 血压高吃什么药好| 只羡鸳鸯不羡仙是什么意思| 没有料酒可以用什么代替| 出挑是什么意思| 近视眼睛什么牌子好| 植物油是什么| 蛟龙是什么意思| 是什么样的感觉我不懂是什么歌| 什么的少年| 红米饭是什么米| 牙周炎是什么症状| 风景旧曾谙是什么意思| 全血粘度低切偏高是什么意思| 为什么手脚冰凉还出汗| 病毒感染咳嗽吃什么药| 手足口病吃什么药| ib是什么单位| 喷砂是什么意思| 梅花什么时候开花| 什么是名媛| 身体动不动就出汗是什么原因| HP是什么| 双子座男和什么座最配对| 艺体生是什么意思| 梦见楼塌了是什么意思| 什么路最窄打一生肖| 耳鸣是什么原因造成的| 小鱼的尾巴有什么作用| 长口腔溃疡是什么原因| 梅五行属什么| mts是什么单位| 什么是艾滋病| 纵隔子宫是什么意思| 地球代表什么生肖| vod是什么意思| 以什么当什么| 过期的啤酒能干什么| 含羞草为什么会害羞| 吃饭快了有什么坏处| 忌是什么意思| 金不换是什么意思| 性格开朗是什么意思| 吃什么补血最快| 一路走好是什么意思| 梦见和邻居吵架什么预兆| 莲子有什么功效和作用| 慢阻肺用什么药| 绝什么意思| 干咳吃什么药好的快| 生姜红糖水有什么作用| 枭神夺食会发生什么| 面包糠是什么做的| 舌头肥厚是什么原因| dove什么意思| kksk是什么意思| 幽闭恐惧症是什么症状| 晚上睡觉容易醒是什么原因| 面部提升紧致做什么效果最好| 11.4什么星座| 吃什么减肥效果最好| 地包天是什么意思| 吃什么能流产| 12颗珠子的手串什么意思| 女生送男生什么礼物好| 头晕目眩吃什么药| 3月19日什么星座| 农历五月二十八是什么日子| 腹部胀气是什么原因| 静脉穿刺是什么意思| 不敢苟同是什么意思| 什么的眼睛| 美味佳肴是什么意思| 孩子为什么会得抽动症| 小孩脚抽筋是什么原因引起的| 等闲识得东风面下一句是什么| 小孩子坐飞机需要什么证件| 线差是什么意思| 血糖高吃什么水果好能降糖| 喉咙痛吃什么药好得最快| 镪水池是什么| 火烈鸟吃什么| 高是什么意思| 胶原蛋白什么牌子好| 什么颜色加什么颜色等于蓝色| 流脑是什么病| 梦见皮带断了什么预兆| ala是什么意思| 苔菜是什么菜| 早上起来嘴巴苦是什么原因| 什么时候入秋| 六月十四号是什么星座| 喝白酒有什么好处| 魏大勋什么星座| 吃山楂有什么好处| 长水痘可以吃什么菜| 石花菜是什么植物| 什么品种荔枝最好吃| 16是什么生肖| 繁什么似锦| 发烧能吃什么食物| 12月什么星座| 包皮开裂擦什么药膏| 打狂犬疫苗不能吃什么| 一什么老虎| 异性缘是什么意思| 南极有什么| 羊水破了什么感觉| 中规中矩是什么意思| 黑茶属于什么茶| 尿液清澈透明说明什么| 激素高是什么原因| 双侧甲状腺弥漫病变是什么意思| 上吐下泻吃什么| 天下乌鸦一般黑是什么意思| 脆皮是什么意思| 尿颜色很黄是什么原因| 什么食物对眼睛好| 紫外线过敏是什么症状| 头疼挂什么科| 豆豉炒什么菜好吃| 生的反义词是什么| 耿耿于怀什么意思| 什么是克氏综合征| 舌头短的人意味着什么| 梦见狗咬我是什么意思| 柴鱼是什么鱼| 左顾右盼的顾是什么意思| 痔疮的初期症状是什么| 什么是变应性鼻炎| 鳞状上皮增生是什么病| 百度Jump to content

烟台市考录公务员本周末笔试 笔试共23942人参加

From Wikipedia, the free encyclopedia
百度 永王兵败后本想逃亡岭南,但在途中为江西采访史所杀,作为附逆永王璘的同案犯李白自然也是在劫难逃。

Second-harmonic imaging microscopy (SHIM) is based on a nonlinear optical effect known as second-harmonic generation (SHG). SHIM has been established as a viable microscope imaging contrast mechanism for visualization of cell and tissue structure and function.[1] A second-harmonic microscope obtains contrasts from variations in a specimen's ability to generate second-harmonic light from the incident light while a conventional optical microscope obtains its contrast by detecting variations in optical density, path length, or refractive index of the specimen. SHG requires intense laser light passing through a material with a noncentrosymmetric molecular structure, either inherent or induced externally, for example by an electric field.[2]

Second-harmonic light emerging from an SHG material is exactly half the wavelength (frequency doubled) of the light entering the material. While two-photon-excited fluorescence (TPEF) is also a two photon process, TPEF loses some energy during the relaxation of the excited state, while SHG is energy conserving. Typically, an inorganic crystal is used to produce SHG light such as lithium niobate (LiNbO3), potassium titanyl phosphate (KTP = KTiOPO4), or lithium triborate (LBO = LiB3O5). Though SHG requires a material to have specific molecular orientation in order for the incident light to be frequency doubled, some biological materials can be highly polarizable, and assemble into fairly ordered, large noncentrosymmetric structures. While some biological materials such as collagen, microtubules, and muscle myosin[3] can produce SHG signals, even water can become ordered and produce second-harmonic signal under certain conditions, which allows SH microscopy to image surface potentials without any labeling molecules.[2] The SHG pattern is mainly determined by the phase matching condition. A common setup for an SHG imaging system will have a laser scanning microscope with a titanium sapphire mode-locked laser as the excitation source. The SHG signal is propagated in the forward direction. However, some experiments have shown that objects on the order of about a tenth of the wavelength of the SHG produced signal will produce nearly equal forward and backward signals.

Second-harmonic image of collagen (shown in white) in liver

Advantages

[edit]

SHIM offers several advantages for live cell and tissue imaging. SHG does not involve the excitation of molecules like other techniques such as fluorescence microscopy therefore, the molecules shouldn't suffer the effects of phototoxicity or photobleaching. Also, since many biological structures produce strong SHG signals, the labeling of molecules with exogenous probes is not required which can also alter the way a biological system functions. By using near infrared wavelengths for the incident light, SHIM has the ability to construct three-dimensional images of specimens by imaging deeper into thick tissues.

Difference and complementarity with two-photon fluorescence (2PEF)

[edit]

Two-photons fluorescence (2PEF) is a very different process from SHG: it involves excitation of electrons to higher energy levels, and subsequent de-excitation by photon emission (unlike SHG, although it is also a 2-photon process). Thus, 2PEF is a non coherent process, spatially (emitted isotropically) and temporally (broad, sample-dependent spectrum). It is also not specific to certain structure, unlike SHG.[4]

It can therefore be coupled to SHG in multiphoton imaging to reveal some molecules that do produce autofluorescence, like elastin in tissues (while SHG reveals collagen or myosin for instance).[4]

History

[edit]

Before SHG was used for imaging, the first demonstration of SHG was performed in 1961 by P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill at the University of Michigan, Ann Arbor using a quartz sample.[5] In 1968, SHG from interfaces was discovered by Bloembergen [6] and has since been used as a tool for characterizing surfaces and probing interface dynamics. In 1971, Fine and Hansen reported the first observation of SHG from biological tissue samples.[7] In 1974, Hellwarth and Christensen first reported the integration of SHG and microscopy by imaging SHG signals from polycrystalline ZnSe.[8] In 1977, Colin Sheppard imaged various SHG crystals with a scanning optical microscope. The first biological imaging experiments were done by Freund and Deutsch in 1986 to study the orientation of collagen fibers in rat tail tendon.[9] In 1993, Lewis examined the second-harmonic response of styryl dyes in electric fields. He also showed work on imaging live cells. In 2006, Goro Mizutani group developed a non-scanning SHG microscope that significantly shortens the time required for observation of large samples, even if the two-photons wide-field microscope was published in 1996 [10] and could have been used to detect SHG. The non-scanning SHG microscope was used for observation of plant starch,[11][12] megamolecule,[13] spider silk[14][15] and so on. In 2010 SHG was extended to whole-animal in vivo imaging.[16][17] In 2019, SHG applications widened when it was applied to the use of selectively imaging agrochemicals directly on leaf surfaces to provide a way to evaluate the effectiveness of pesticides.[18]

Quantitative measurements

[edit]

Orientational anisotropy

[edit]

SHG polarization anisotropy can be used to determine the orientation and degree of organization of proteins in tissues since SHG signals have well-defined polarizations. By using the anisotropy equation:[19]

and acquiring the intensities of the polarizations in the parallel and perpendicular directions. A high value indicates an anisotropic orientation whereas a low value indicates an isotropic structure. In work done by Campagnola and Loew,[19] it was found that collagen fibers formed well-aligned structures with an value.

Forward over backward SHG

[edit]

SHG being a coherent process (spatially and temporally), it keeps information on the direction of the excitation and is not emitted isotropically. It is mainly emitted in forward direction (same as excitation), but can also be emitted in backward direction depending on the phase-matching condition. Indeed, the coherence length beyond which the conversion of the signal decreases is:

with for forward, but for backward such that >> . Therefore, thicker structures will appear preferentially in forward, and thinner ones in backward: since the SHG conversion depends at first approximation on the square of the number of nonlinear converters, the signal will be higher if emitted by thick structures, thus the signal in forward direction will be higher than in backward. However, the tissue can scatter the generated light, and a part of the SHG in forward can be retro-reflected in the backward direction.[20] Then, the forward-over-backward ratio F/B can be calculated,[20] and is a metric of the global size and arrangement of the SHG converters (usually collagen fibrils). It can also be shown that the higher the out-of-plane angle of the scatterer, the higher its F/B ratio (see fig. 2.14 of [21]).

Polarization-resolved SHG

[edit]

The advantages of polarimetry were coupled to SHG in 2002 by Stoller et al.[22] Polarimetry can measure the orientation and order at molecular level, and coupled to SHG it can do so with the specificity to certain structures like collagen: polarization-resolved SHG microscopy (p-SHG) is thus an expansion of SHG microscopy.[23] p-SHG defines another anisotropy parameter, as:[24]

which is, like r, a measure of the principal orientation and disorder of the structure being imaged. Since it is often performed in long cylindrical filaments (like collagen), this anisotropy is often equal to ,[25] where is the nonlinear susceptibility tensor and X the direction of the filament (or main direction of the structure), Y orthogonal to X and Z the propagation of the excitation light. The orientation ? of the filaments in the plane XY of the image can also be extracted from p-SHG by FFT analysis, and put in a map.[25][26]

Fibrosis quantization

[edit]

Collagen (particular case, but widely studied in SHG microscopy), can exist in various forms : 28 different types, of which 5 are fibrillar. One of the challenge is to determine and quantify the amount of fibrillar collagen in a tissue, to be able to see its evolution and relationship with other non-collagenous materials.[27]

To that end, a SHG microscopy image has to be corrected to remove the small amount of residual fluorescence or noise that exist at the SHG wavelength. After that, a mask can be applied to quantify the collagen inside the image.[27] Among other quantization techniques, it is probably the one with the highest specificity, reproductibility and applicability despite being quite complex.[27]

Others

[edit]

It has also been used to prove that backpropagating action potentials invade dendritic spines without voltage attenuation, establishing a sound basis for future work on Long-term potentiation. Its use here was that it provided a way to accurately measure the voltage in the tiny dendritic spines with an accuracy unattainable with standard two-photon microscopy.[28] Meanwhile, SHG can efficiently convert near-infrared light to visible light to enable imaging-guided photodynamic therapy, overcoming the penetration depth limitations.[29]

Materials that can be imaged

[edit]
Biological tissues imaged by second-harmonic generation (SHG) microscopy. (a) Transverse cut of a human cornea. (b) Skeletal muscle from zebrafish (myosin). (c) Adult mice-tail tendon. (d) Surface cartilage from a knee of a mature horse.

SHG microscopy and its expansions can be used to study various tissues: some example images are reported in the figure below: collagen inside the extracellular matrix remains the main application. It can be found in tendon, skin, bone, cornea, aorta, fascia, cartilage, meniscus, intervertebral disks...

Myosin can also be imaged in skeletal muscle or cardiac muscle.

Table 1: Materials visible by or that efficiently generate SHG.
Type Material Found in SHG signal Specificity
Carbohydrate Cellulose Wood, green plant, algae. Quite weak in normal cellulose,[18] but substantial in crystalline or nanocrystalline cellulose. -
Starch Staple foods, green plant Quite intense signal [30] chirality is at micro and macro level, and the SHG is different under right or left-handed circular polarization
Megamolecular polysaccharide sacran Cyanobactery From sacran cotton-like lump, fibers, and cast films signal from films is weaker [13]
Protein Fibroin and sericin Spider silk Quite weak [14]
Collagen[9] tendon, skin, bone, cornea, aorta, fascia, cartilage, meniscus, intervertebral disks ; connective tissues Quite strong, depends on the type of the collagen (does it form fibrils, fibers ?) nonlinear susceptibility tensor components are , , , with ~ and / ~ 1.4 in most cases
Myosin Skeletal or cardiac muscle[3] Quite strong nonlinear susceptibility tensor components are , , with ~ but / ~ 0.6 < 1 contrary to collagen
Tubulin Microtubules in mitosis or meiosis,[31] or in neurites (mainly axons)[32] Quite weak The microtubules have to be aligned to efficiently generate
Minerals Piezoelectric crystals Also called nonlinear crystals Strong if phase-matched Different types of phase-matching, critical of non-critical
Polar liquids Water Most living organisms Barely detectable (requires wide-field geometry and ultra-short laser pulses [33]) Directly probing electrostatic fields, since oriented water molecules satisfy phase-matching condition [34]

Coupling with THG microscopy

[edit]

Third-Harmonic Generation (THG) microscopy can be complementary to SHG microscopy, as it is sensitive to the transverse interfaces, and to the 3rd order nonlinear susceptibility [35][36]

Applications

[edit]

Cancer progression, tumor characterization

[edit]

The mammographic density is correlated with the collagen density, thus SHG can be used for identifying breast cancer.[37] SHG is usually coupled to other nonlinear techniques such as Coherent anti-Stokes Raman Scattering or Two-photon excitation microscopy, as part of a routine called multiphoton microscopy (or tomography) that provides a non-invasive and rapid in vivo histology of biopsies that may be cancerous.[38]

Breast cancer

[edit]

The comparison of forward and backward SHG images gives insight about the microstructure of collagen, itself related to the grade and stage of a tumor, and its progression in breast.[39] Comparison of SHG and 2PEF can also show the change of collagen orientation in tumors.[40] Even if SHG microscopy has contributed a lot to breast cancer research, it is not yet established as a reliable technique in hospitals, or for diagnostic of this pathology in general.[39]

Ovarian cancer

[edit]

Healthy ovaries present in SHG a uniform epithelial layer and well-organized collagen in their stroma, whereas abnormal ones show an epithelium with large cells and a changed collagen structure.[39] The r ratio (see #Orientational anisotropy) is also used [41] to show that the alignment of fibrils is slightly higher for cancerous than for normal tissues.

Skin cancer

[edit]

SHG is, again, combined to 2PEF is used to calculate the ratio:

where shg (resp. tpef) is the number of thresholded pixels in the SHG (resp. 2PEF) image,[42] a high MFSI meaning a pure SHG image (with no fluorescence). The highest MFSI is found in cancerous tissues,[39] which provides a contrast mode to differentiate from normal tissues.

SHG was also combined to Third-Harmonic Generation (THG) to show that backward (see #Forward over backward SHG) THG is higher in tumors.[43]

Pancreatic cancer

[edit]

Changes in collagen ultrastructure in pancreatic cancer can be investigated by multiphoton fluorescence and polarization-resolved SHIM.[44]

Other cancers

[edit]

SHG microscopy was reported for the study of lung, colonic, esophageal stroma and cervical cancers.[39]

Pathologies detection

[edit]

Alterations in the organization or polarity of the collagen fibrils can be signs of pathology,.[45][46]

In particular, the anisotropic alignment of collagen fibers allowed the discrimination of healthy dermis from pathological scars in skin.[47] Also, pathologies in cartilage such as osteoarthritis can be probed by polarization-resolved SHG microscopy,.[48][49] SHIM was later extended to fibro-cartilage (meniscus).[50]

Tissue engineering

[edit]

The ability of SHG to image specific molecules can reveal the structure of a certain tissue one material at a time, and at various scales (from macro to micro) using microscopy. For instance, the collagen (type I) is specifically imaged from the extracellular matrix (ECM) of cells, or when it serves as a scaffold or conjonctive material in tissues.[51] SHG also reveals fibroin in silk, myosin in muscles and biosynthetized cellulose. All of this imaging capability can be used to design artificials tissues, by targeting specific points of the tissue : SHG can indeed quantitatively measure some orientations, and material quantity and arrangement.[51] Also, SHG coupled to other multiphoton techniques can serve to monitor the development of engineered tissues, when the sample is relatively thin however.[52] Of course, they can finally be used as a quality control of the fabricated tissues.[52]

Structure of the eye

[edit]

Cornea, at the surface of the eye, is considered to be made of plywood-like structure of collagen, due to the self-organization properties of sufficiently dense collagen.[53] Yet, the collagenous orientation in lamellae is still under debate in this tissue.[54] Keratoconus cornea can also be imaged by SHG to reveal morphological alterations of the collagen.[55] Third-Harmonic Generation (THG) microscopy is moreover used to image the cornea, which is complementary to SHG signal as THG and SHG maxima in this tissue are often at different places.[56]

See also

[edit]

Sources

[edit]

References

[edit]
  1. ^ Juan Carlos Stockert, Alfonso Blázquez-Castro (2017). "Chapter 19 Non-Linear Optics". Fluorescence Microscopy in Life Sciences. Bentham Science Publishers. pp. 642–686. ISBN 978-1-68108-519-7. Retrieved 24 December 2017.
  2. ^ a b Roesel, D.; Eremchev, M.; Sch?nfeldová, T.; Lee, S.; Roke, S. (2025-08-04). "Water as a contrast agent to quantify surface chemistry and physics using second harmonic scattering and imaging: A perspective". Applied Physics Letters. 120 (16). AIP Publishing: 160501. Bibcode:2022ApPhL.120p0501R. doi:10.1063/5.0085807. ISSN 0003-6951. S2CID 248252664.
  3. ^ a b Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Fusi, L.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S. (2010). "Probing myosin structural conformation in vivo by second-harmonic generation microscopy". Proceedings of the National Academy of Sciences. 107 (17): 7763–7768. Bibcode:2010PNAS..107.7763N. doi:10.1073/pnas.0914782107. ISSN 0027-8424. PMC 2867856. PMID 20385845.
  4. ^ a b Chen, Xiyi; Campagnola, P.J. (2016). "SHG Microscopy and Its Comparison with THG, CARS, and Multiphoton Excited Fluorescence Imaging". Second Harmonic Generation Imaging, 2nd edition. CRC Taylor&Francis. ISBN 978-1-4398-4914-9.
  5. ^ Franken, Peter; Weinreich, G; Peters, CW; Hill, AE (1961). "Generation of Optical Harmonics". Physical Review Letters. 7 (4): 118–119. Bibcode:1961PhRvL...7..118F. doi:10.1103/PhysRevLett.7.118.
  6. ^ Bloembergen, N.; Chang, R. K.; Jha, S. S.; Lee, C. H. (1968). "Optical Second-Harmonic Generation in Reflection from Media with Inversion Symmetry". Physical Review. 174 (813): 813–822. Bibcode:1968PhRv..174..813B. doi:10.1103/PhysRev.174.813.
  7. ^ Fine, S.; Hansen, W. P. (1971). "Optical second harmonic generation in biological systems". Applied Optics. 10 (10): 2350–2353. Bibcode:1971ApOpt..10.2350F. doi:10.1364/AO.10.002350. PMID 20111328.
  8. ^ Hellwarth, Robert; Christensen, Paul (1974). "Nonlinear optical microscopic examination of structure in polycrystalline ZnSe". Optics Communications. 12 (3): 318–322. Bibcode:1974OptCo..12..318H. doi:10.1016/0030-4018(74)90024-8.
  9. ^ a b Freund, I.; Deutsch, M. (1986). "Second-harmonic microscopy of biological tissue". Optics Letters. 11 (2): 94–96. Bibcode:1986OptL...11...94F. doi:10.1364/OL.11.000094. PMID 19730544.
  10. ^ Brakenhoff, G.J.; Sonoda, Y.; Squier, J.; Norris, T.; Bliton, A.C.; Wade, M.H.; Athey, B. (1996). "Real-time two-photon confocal microscopy using afemtosecond, amplified Tisapphire system". Journal of Microscopy. 181 (3): 253–259. doi:10.1046/j.1365-2818.1996.97379.x. hdl:2027.42/71623. PMID 8642584. S2CID 12174100.
  11. ^ Mizutani, G.; Sonoda, Y.; Sano, H.; Sakamoto, M.; Takahashi, T.; Ushioda, S. (2000). "Detection of starch granules in a living plant by optical second harmonic microscopy". Journal of Luminescence. 87: 824–826. Bibcode:2000JLum...87..824M. doi:10.1016/S0022-2313(99)00428-7.
  12. ^ Zhao, Yue; Takahashi, Shogo; Li, Yanrong; Hien, K. T. T.; Matsubara, Akira; Mizutani, Goro; Nakamura, Yasunori (2018). "Ungerminated Rice Grains Observed by Femtosecond Pulse Laser Second-Harmonic Generation Microscopy". J. Phys. Chem. B. 122 (32): 7855–7861. arXiv:1808.05449. doi:10.7566/JPSJ.86.124401. PMID 30040415. S2CID 51687400.
  13. ^ a b Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.; Amornwachirabodee, Kittima; Okajima, Maiko; Kaneko, Tatsuo (2017). "Optical second-harmonic images of sacran megamolecule aggregates". Journal of the Optical Society of America A. 34 (2): 146–152. arXiv:1702.07165. Bibcode:2017JOSAA..34..146Z. doi:10.1364/JOSAA.34.000146. PMID 28157840. S2CID 4533122.
  14. ^ a b Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N. (June 2017). "Second-order nonlinear optical microscopy of spider silk". Applied Physics B. 123 (6): 188. arXiv:1706.03186. Bibcode:2017ApPhB.123..188Z. doi:10.1007/s00340-017-6766-z. S2CID 51684427.
  15. ^ Zhao, Yue; Li, Yanrong; Hien, K. T. T.; Mizutani, Goro; Rutt, Harvey N. (2019). "Observation of Spider Silk by Femtosecond Pulse Laser Second Harmonic Generation Microscopy". Surf. Interface Anal. 51 (1): 50–56. arXiv:1812.10390. doi:10.1002/sia.6545. S2CID 104921418.
  16. ^ Cohen, B. E. (2010). "Biological imaging: Beyond fluorescence". Nature. 467 (7314): 407–8. Bibcode:2010Natur.467..407C. doi:10.1038/467407a. PMID 20864989. S2CID 205058963.
  17. ^ Pantazis, P.; Maloney, J.; Wu, D.; Fraser, S. (2010). "Second harmonic generating (SHG) nanoprobes for in vivo imaging". Proceedings of the National Academy of Sciences of the United States of America. 107 (33): 14535–14540. Bibcode:2010PNAS..10714535P. doi:10.1073/pnas.1004748107. PMC 2930484. PMID 20668245.
  18. ^ a b Grubbs, Benjamin; Etter, Nicholas; Slaughter, Wesley; Pittsford, Alexander; Smith, Connor; Schmitt, Paul (August 2019). "A Low-Cost Beam-Scanning Second Harmonic Generation Microscope with Application for Agrochemical Development and Testing". Analytical Chemistry. 91 (18): 11723–11730. doi:10.1021/acs.analchem.9b02304. PMID 31424922. S2CID 201099822.
  19. ^ a b Campagnola, Paul J; Loew, Leslie M (2003). "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms". Nature Biotechnology. 21 (11): 1356–1360. doi:10.1038/nbt894. ISSN 1087-0156. PMID 14595363. S2CID 18701570.
  20. ^ a b Chen, Xiyi; Nadiarynkh, Oleg; Plotnikov, Sergey; Campagnola, Paul J (2012). "Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure". Nature Protocols. 7 (4): 654–669. doi:10.1038/nprot.2012.009. ISSN 1754-2189. PMC 4337962. PMID 22402635.
  21. ^ Cicchi, Riccardo; Sacconi, Leonardo; Vanzi, Francesco; Pavone, Francesco S. (2016). "How to Build an SHG Apparatus" in Second Harmonic Generation Imaging, 2nd edition. CRC Taylor&Francis. ISBN 978-1-4398-4914-9.
  22. ^ Stoller, P.; Reiser, K.; Celliers, P.; Rubenchik, A. (2002). "Polarization-modulated second harmonic generation in collagen". Biophys. J. 82 (6): 3330–3342. Bibcode:2002BpJ....82.3330S. doi:10.1016/S0006-3495(02)75673-7. PMC 1302120. PMID 12023255.
  23. ^ Duboisset, Julien; A?t-Belkacem, Dora; Roche, Muriel; Rigneault, Hervé; Brasselet, Sophie (2012). "Generic model of the molecular orientational distribution probed by polarization-resolved second-harmonic generation" (PDF). Physical Review A. 85 (4): 043829. Bibcode:2012PhRvA..85d3829D. doi:10.1103/PhysRevA.85.043829. ISSN 1050-2947. S2CID 85559569.
  24. ^ Teulon, Claire; Gusachenko, Ivan; Latour, Ga?l; Schanne-Klein, Marie-Claire (2015). "Theoretical, numerical and experimental study of geometrical parameters that affect anisotropy measurements in polarization-resolved SHG microscopy" (PDF). Optics Express. 23 (7): 9313–28. Bibcode:2015OExpr..23.9313T. doi:10.1364/OE.23.009313. ISSN 1094-4087. PMID 25968762.
  25. ^ a b Gusachenko, Ivan; Tran, Viet; Houssen, Yannick Goulam; Allain, Jean-Marc; Schanne-Klein, Marie-Claire (2012). "Polarization-Resolved Second-Harmonic Generation in Tendon upon Mechanical Stretching". Biophysical Journal. 102 (9): 2220–2229. Bibcode:2012BpJ...102.2220G. doi:10.1016/j.bpj.2012.03.068. ISSN 0006-3495. PMC 3341536. PMID 22824287.
  26. ^ Mazumder, Nirmal; Deka, Gitanjal; Wu, Wei-Wen; Gogoi, Ankur; Zhuo, Guan-Yu; Kao, Fu-Jen (2017). "Polarization resolved second harmonic microscopy". Methods. 128: 105–118. doi:10.1016/j.ymeth.2017.06.012. ISSN 1046-2023. PMID 28624539.
  27. ^ a b c Marie-Claire Schanne-Klein (2016). "SHG Imaging of Collagen and Application to Fibrosis Quantization" in Second Harmonic Generation Imaging, 2nd edition. CRC Taylor&Francis. ISBN 978-1-4398-4914-9.
  28. ^ Nuriya, Mutsuo; Jiang, Jiang; Nemet, Boaz; Eisenthal, Kenneth B.; Yuste, Rafael (2006). "Imaging membrane potential in dendritic spines". PNAS. 103 (3): 786–790. Bibcode:2006PNAS..103..786N. doi:10.1073/pnas.0510092103. PMC 1334676. PMID 16407122.
  29. ^ Gu, Bobo; Pliss, Artem; Kuzmin, Andrey N. (2016). "In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space". Biomaterials. 104: 78–86. doi:10.1016/j.biomaterials.2016.07.012. PMID 27442221.
  30. ^ Psilodimitrakopoulos, Sotiris; Amat-Roldan, Ivan; Loza-Alvarez, Pablo; Artigas, David (2010). "Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy". Journal of Optics. 12 (8): 084007. Bibcode:2010JOpt...12h4007P. doi:10.1088/2040-8978/12/8/084007. hdl:2117/10342. ISSN 2040-8978. S2CID 120603827.
  31. ^ Pavone, Francesco S.; Campagnola, P.J. (2016). Second Harmonic Generation Imaging, 2nd edition. CRC Taylor&Francis. ISBN 978-1-4398-4914-9.
  32. ^ Van Steenbergen, V.; Boesmans, W.; Li, Z.; de Coene, Y.; Vints, K.; Baatsen, P.; Dewachter, I.; Ameloot, M.; Clays, K.; Vanden Berghe, P. (2019). "Molecular understanding of label-free second harmonic imaging of microtubules". Nature Communications. 10 (1): 3530. Bibcode:2019NatCo..10.3530V. doi:10.1038/s41467-019-11463-8. ISSN 2041-1723. PMC 6684603. PMID 31387998.
  33. ^ Roesel, D.; Eremchev, M.; Sch?nfeldová, T.; Lee, S.; Roke, S. (18 April 2022). "Water as a contrast agent to quantify surface chemistry and physics using second harmonic scattering and imaging: A perspective". Applied Physics Letters. 120 (16): 160501. Bibcode:2022ApPhL.120p0501R. doi:10.1063/5.0085807. eISSN 1077-3118. ISSN 0003-6951. S2CID 248252664.
  34. ^ Roesel, David; Eremchev, Maksim; Poojari, Chetan S.; Hub, Jochen S.; Roke, Sylvie (15 December 2022). "Ion-Induced Transient Potential Fluctuations Facilitate Pore Formation and Cation Transport through Lipid Membranes". Journal of the American Chemical Society. 144 (51): 23352–23357. doi:10.1021/jacs.2c08543. eISSN 1520-5126. ISSN 0002-7863. PMC 9801421. PMID 36521841.
  35. ^ Barad, Y.; Eisenberg, H.; Horowitz, M.; Silberberg, Y. (1997). "Nonlinear scanning laser microscopy by third harmonic generation". Applied Physics Letters. 70 (8): 922–924. Bibcode:1997ApPhL..70..922B. doi:10.1063/1.118442. ISSN 0003-6951.
  36. ^ Olivier, N.; Luengo-Oroz, M. A.; Duloquin, L.; Faure, E.; Savy, T.; Veilleux, I.; Solinas, X.; Debarre, D.; Bourgine, P.; Santos, A.; Peyrieras, N.; Beaurepaire, E. (2010). "Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy" (PDF). Science. 329 (5994): 967–971. Bibcode:2010Sci...329..967O. doi:10.1126/science.1189428. ISSN 0036-8075. PMID 20724640. S2CID 6971291.
  37. ^ Alowami, Salem; Troup, Sandra; Al-Haddad, Sahar; Kirkpatrick, Iain; Watson, Peter H (2003). "Mammographic density is related to stroma and stromal proteoglycan expression". Breast Cancer Research. 5 (5): R129-35. doi:10.1186/bcr622. ISSN 1465-542X. PMC 314426. PMID 12927043.
  38. ^ K?nig, Karsten (2018). "Multiphoton Tomography (MPT)" Chap.13 in Multiphoton Microscopy and Fluorescence Lifetime Imaging - Applications in Biology and Medicine. De Gruyter. ISBN 978-3-11-042998-5.
  39. ^ a b c d e Keikhosravi, Adib; Bredfeldt, Jeremy S.; Sagar, Abdul Kader; Eliceiri, Kevin W. (2014). "Second-harmonic generation imaging of cancer". Quantitative Imaging in Cell Biology. Methods in Cell Biology. Vol. 123. pp. 531–546. doi:10.1016/B978-0-12-420138-5.00028-8. ISBN 978-0-12-420138-5. ISSN 0091-679X. PMID 24974046.
  40. ^ Provenzano, Paolo P; Eliceiri, Kevin W; Campbell, Jay M; Inman, David R; White, John G; Keely, Patricia J (2006). "Collagen reorganization at the tumor-stromal interface facilitates local invasion". BMC Medicine. 4 (38): 38. doi:10.1186/1741-7015-4-38. PMC 1781458. PMID 17190588.
  41. ^ Nadiarnykh, Oleg; LaComb, Ronald B; Brewer, Molly A; Campagnola, Paul J (2010). "Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy". BMC Cancer. 10 (1): 94. doi:10.1186/1471-2025-08-04. ISSN 1471-2407. PMC 2841668. PMID 20222963.
  42. ^ Lin, Sung-Jan; Jee, Shiou-Hwa; Kuo, Chien-Jui; Wu, Ruei-Jr; Lin, Wei-Chou; Chen, Jau-Shiuh; Liao, Yi-Hua; Hsu, Chih-Jung; Tsai, Tsen-Fang; Chen, Yang-Fang; Dong, Chen-Yuan (2006). "Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging". Optics Letters. 31 (18): 2756–8. Bibcode:2006OptL...31.2756L. doi:10.1364/OL.31.002756. ISSN 0146-9592. PMID 16936882.
  43. ^ Chen, Szu-Yu; Chen, Shee-Uan; Wu, Hai-Yin; Lee, Wen-Jeng; Liao, Yi-Hua; Sun, Chi-Kuang (2009). "In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy" (PDF). IEEE Journal of Selected Topics in Quantum Electronics. 16 (3): 478–492. doi:10.1109/JSTQE.2009.2031987. S2CID 21644641.
  44. ^ Tokarz, Danielle; Cisek, Richard; Joseph, Ariana; Golaraei, Ahmad; Mirsanaye, Kamdin; Krouglov, Serguei; Asa, Sylvia L.; Wilson, Brian C.; Barzda, Virginijus (2019). "Characterization of Pancreatic Cancer Tissue Using Multiphoton Excitation Fluorescence and Polarization-Sensitive Harmonic Generation Microscopy". Frontiers in Oncology. 9: 272. doi:10.3389/fonc.2019.00272. ISSN 2234-943X. PMC 6478795. PMID 31058080.
  45. ^ K?nig, Karsten (2018). Multiphoton Microscopy and Fluorescence Lifetime Imaging - Applications in Biology and Medicine. De Gruyter. ISBN 978-3-11-042998-5.
  46. ^ Cicchi, Riccardo (2014). "The New Digital Pathology: Just Say NLO". Digestive Diseases and Sciences. 59 (7): 1347–1348. doi:10.1007/s10620-014-3165-8. ISSN 0163-2116. PMID 24817337.
  47. ^ Cicchi, Riccardo; Vogler, Nadine; Kapsokalyvas, Dimitrios; Dietzek, Benjamin; Popp, Jürgen; Pavone, Francesco Saverio (2013). "From molecular structure to tissue architecture: collagen organization probed by SHG microscopy". Journal of Biophotonics. 6 (2): 129–142. doi:10.1002/jbio.201200092. ISSN 1864-063X. PMID 22791562.Open access icon
  48. ^ Mansfield, Jessica C.; Winlove, C. Peter; Moger, Julian; Matcher, Steve J. (2008). "Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy". Journal of Biomedical Optics. 13 (4): 044020. Bibcode:2008JBO....13d4020M. doi:10.1117/1.2950318. hdl:10036/4485. ISSN 1083-3668. PMID 19021348. S2CID 25096045.Open access icon
  49. ^ Yeh, Alvin T.; Hammer-Wilson, Marie J.; Van Sickle, David C.; Benton, Hilary P.; Zoumi, Aikaterini; Tromberg, Bruce J.; Peavy, George M. (2005). "Nonlinear optical microscopy of articular cartilage". Osteoarthritis and Cartilage. 13 (4): 345–352. doi:10.1016/j.joca.2004.12.007. ISSN 1063-4584. PMID 15780648. S2CID 20052077.Open access icon
  50. ^ Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M. (2016). "Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage". Nature Materials. 15 (4): 477–484. Bibcode:2016NatMa..15..477H. doi:10.1038/nmat4520. ISSN 1476-1122. PMC 4805445. PMID 26726994.
  51. ^ a b Chen, W.L.; Lee, H.S. (2016). "SHG Imaging for Tissue Engineering Applications". Second Harmonic Generation Imaging, 2nd edition. CRC Taylor&Francis. ISBN 978-1-4398-4914-9.
  52. ^ a b Enejder, A.; Brackmann, C. (2020). "Use of Multiphoton Microscopy for Tissue Engineering Applications". Imaging in Cellular and Tissue Engineering, 1st edition. CRC Taylor&Francis. ISBN 9780367445867.
  53. ^ Krachmer, J.H.; Mannis, M.J.; Holland, E.J. (2005). Cornea, Fundamentals, Diagnosis and Management. 2nd edition. Elsevier Mosby. ISBN 0323023150.
  54. ^ Bueno, Juan M.; ávila, Francisco J.; Martínez-García, M. Carmen (2019). "Quantitative Analysis of the Corneal Collagen Distribution after In Vivo Cross-Linking with Second Harmonic Microscopy". BioMed Research International. 2019: 3860498. doi:10.1155/2019/3860498. ISSN 2314-6133. PMC 6348900. PMID 30756083.
  55. ^ Morishige, N.; Shin-gyou-uchi, R.; Azumi, H.; Ohta, H.; Morita, Y.; Yamada, N.; Kimura, K.; Takahara, A.; Sonoda, K.-H. (2014). "Quantitative Analysis of Collagen Lamellae in the Normal and Keratoconic Human Cornea by Second Harmonic Generation Imaging Microscopy". Investigative Ophthalmology & Visual Science. 55 (12): 8377–8385. doi:10.1167/iovs.14-15348. ISSN 0146-0404. PMID 25425311.
  56. ^ Olivier, N.; Débarre, D.; Beaurepaire, E. (2016). "THG Microscopy of Cells and Tissues: Contrast Mechanisms and Applications". Second Harmonic Generation Imaging, 2nd edition. CRC Taylor&Francis. ISBN 978-1-4398-4914-9.
一惊一乍是什么意思 guess是什么品牌 嘉庆叫什么名字 朱砂有什么功效 山药有什么营养
办健康证需要什么 吃什么丰胸效果好又快 早上8点到9点是什么时辰 皇子的妻子叫什么 血糖高忌什么食物
来月经有血块是什么原因 肩胛骨突出是什么原因 如果你是什么那快乐就是什么 山大王是什么意思 胃癌早期有什么症状
心率低是什么原因 什么补钾最快 干眼症用什么药最好 余沧海为什么是两个人 小儿磨牙是什么原因引起的
三高指什么hcv9jop6ns5r.cn 左甲状腺是什么病hcv8jop3ns1r.cn 孕妇脚抽筋是什么原因zsyouku.com 总出虚汗是什么原因hcv8jop5ns8r.cn 天蝎座和什么星座最配yanzhenzixun.com
狗的尾巴有什么作用hcv9jop8ns2r.cn 做梦梦到钓鱼是什么意思hcv9jop3ns0r.cn 肾结石发作有什么症状hebeidezhi.com 菩提子是什么树的种子fenrenren.com 脚背有痣代表什么hcv7jop5ns5r.cn
鸡胸是什么原因引起的hcv9jop2ns9r.cn 为什么说有钱难买孕妇Bhcv9jop6ns4r.cn 单身为什么中指戴戒指hcv9jop7ns0r.cn 仰天长叹的意思是什么hcv9jop6ns0r.cn 什么是笑气hcv8jop6ns9r.cn
稀字五行属什么zhiyanzhang.com 虎皮兰开花寓意什么adwl56.com e6e7阳性是什么意思hcv9jop5ns3r.cn 胸口隐隐作痛挂什么科zhongyiyatai.com 怀孕一个星期有什么症状0297y7.com
百度