00年是什么年| tg什么意思| 喉咙不舒服是什么原因| anode是什么意思| 药师佛手里拿什么法器| 女人耳鸣是什么前兆| 盆腔积液是什么原因| ipv是什么疫苗| 草龟吃什么食物| 3月25号是什么星座| adh是什么| 一九三五年属什么生肖| 心肌缺血什么症状| 腰眼疼是什么原因引起的| 什么粉底液最好用| 闭关是什么意思| 流汗有什么好处| 女生喝红牛有什么影响| 东北和山东有什么区别| 怀孕天数从什么时候算起| 舌头起泡吃什么药好| 今天买什么股票| 捞女是什么意思| 胎盘血池是什么意思| 濡湿是什么意思| 打完升白针有什么反应| 部队股长是什么级别| 诚不我欺什么意思| 舌头长泡吃什么药| 梦见坟墓是什么意思| 撅眼是什么原因造成的| nsaid是什么药| 鸡蛋和什么搭配最营养| 巨人观什么意思| 吃什么对肺最好| 睾头囊肿是什么意思| 冬虫夏草是什么| 冠脉硬化什么意思| 林五行属什么| 呼吸短促是什么原因| 牛鬼蛇神是什么意思| 属虎五行属什么| 喝啤酒吃什么菜最好| 什么食物热量低| 手脚心热是什么原因| 外阴白斑用什么药最好| 睡觉背疼是什么原因| barbour是什么牌子| 笙字五行属什么| 白矾和明矾有什么区别| 一国两制是什么时候提出的| 不善言辞是什么意思| 努嘴是什么意思| 美满霉素又叫什么名字| 外围是什么意思| 拔掉智齿有什么影响| 司令是什么意思| 西红柿什么时候成熟| 09年是什么年| 为什么吃完饭就想拉屎| 脚手发热是什么原因| 什么时候有雨| 字如其人什么意思| 剪不断理还乱是什么意思| 什么身什么骨| 蟑螂怕什么| 女人左眼皮跳是什么预兆| 缪在姓氏中读什么| 6月11日什么星座| 尿很黄是什么原因| 舌苔开裂是什么原因呢| 投射效应是什么意思| 汗蒸有什么好处和功效| 彩虹旗是什么意思| 杏色配什么颜色最洋气| 二月初九是什么星座| 老公什么意思| 含服是什么意思| 脚痒用什么药膏最有效| 老是说梦话是什么原因| 属狗和什么属相最配| 师长是什么级别| 属马的贵人属相是什么| 嗓子疼吃什么药| 反酸烧心吃什么药效果好| 多是什么结构的字| 贝壳吃什么食物| 繁花似锦是什么意思| 什么地方| 牙龈肿痛吃什么药效果好| 莲子心有什么作用| 女孩子喜欢什么礼物| 中级职称是什么| 血液净化是什么意思| 胃出血恢复期吃什么好| 感冒咳嗽挂什么科| 苯中毒是什么症状| 纳气是什么意思| 什么产品美白效果最好最快| 晞是什么意思| 思前想后是什么意思| 什么是体外射精| 玛卡和什么搭配壮阳效果最佳| 头疼呕吐是什么原因| 肾上腺素有什么用| 险资举牌什么意思| 狗为什么会吐| 梦见和死去的亲人说话是什么意思| 左侧脖子疼是什么原因| 肝脏损伤会出现什么症状| 吃什么降血糖快| 白蛋白低是什么原因| 温州人为什么会做生意| cos是什么牌子| 白玫瑰代表什么| 春眠不觉晓的晓是什么意思| 肺结核通过什么途径传染| 诊查费是什么| 什么叫统招| 血压200意味着什么| 明朝北京叫什么| 牛仔裤搭配什么鞋| fps是什么意思| 芥末是什么植物| 开口腔诊所需要什么条件| 纵隔占位是什么意思| 钟是什么生肖| 头昏是什么原因引起的| 看到刺猬有什么预兆| 什么东西补铁效果好而且最快| 蒙古古代叫什么| 鬼冢虎为什么很少人穿| 皮肤瘙痒吃什么药| 洗衣机什么牌子的好| 靠山是什么意思| 麻椒和花椒有什么区别| ca是什么意思| 中风吃什么药最有效| 同居是什么意思| 多春鱼为什么全是籽| 健康证都查什么| 夏天容易出汗是什么原因| 11.28什么星座| 八月十三号是什么星座| 一个大一个小念什么| 山川是什么意思| 容易被吓到是什么原因| 孩子白细胞高是什么原因| 什么东西有脚却不能走路| 脾胃不好有什么症状表现| 欲情故纵什么意思| 感冒喉咙痒吃什么药| 不正常的人有什么表现| 谷氨酰转移酶高是什么病| 番薯是什么时候传入中国的| 100001是什么电话| 来月经肚子疼是什么原因| 三头六臂指什么生肖| 6月27号是什么星座| 三点水一个分读什么| 清朝皇帝姓什么| 什么是便秘| 营养不良会导致身体出现什么症状| 异常白细胞形态检查是查什么病| 龟头是什么意思| 地球是什么意思| 土豆什么时候收获| 细菌性阴道炎用什么药效果最好| 植物神经紊乱吃什么中成药| 盆腔炎吃什么| 吃皮蛋有什么好处和坏处| 罗汉果有什么功效| 这个是什么表情| 天公作美是什么生肖| 四月初八是什么日子| 上海市市长是什么级别| 迁徙是什么意思| 七一年属什么| 尿黄是什么原因| 红酒配什么菜| 总胆红素是什么| 流氓兔什么意思| 防风通圣颗粒治什么病| 莎莎舞是什么意思| 中年危机是什么意思| 挛是什么意思| 嗓子疼吃什么水果好| 眼底出血是什么原因造成的| 膝盖痛挂什么科| 脸小适合什么发型| 老夫老妻什么意思| 内消瘰疬丸主治什么病| 鲜为人知什么意思| 牛加一笔是什么字| 胆汁酸高是什么原因| 10个油是什么意思| 梦见掉了一颗牙齿是什么征兆| 4.12是什么星座| 吃什么油对心脑血管好| 肠胃挂什么科| 为什么感冒喝白酒好了| 三教九流代表什么生肖| 胆结石吃什么可以化掉结石| 啤酒加鸡蛋有什么功效| 肛裂吃什么药| 河豚为什么有毒| 直男什么意思| 丙肝吃什么药效果好| 人为什么要火化| 数字5代表什么意思| kerry英文名什么意思| 帽子的英文是什么| 肝血不足吃什么药| 掉头发是缺什么维生素| 胭脂是什么| 什么布料最好| 黄精有什么作用| 脑梗吃什么最好| 毒瘤是什么意思| 塬字五行属什么| 艾草长什么样子图片| apd是什么意思| 白细胞是什么意思| 动一下就出汗是什么原因| 酒糟鼻子是什么原因引起的| 清纯是什么意思| 寒湿重吃什么中成药| 什么样的女人性欲强| 隐翅虫是什么样子| np是什么意思| 北面属于什么档次| 血小板压积偏低是什么意思| 小便失禁是什么原因| 沉网和浮网有什么区别| 梦见买房子是什么预兆| 军校出来是什么军衔| 深紫色配什么颜色好看| 异国他乡的异是什么意思| 什么样的红点是艾滋病| 卷柏属于什么植物| 一月30号是什么星座| 中国海警是什么编制| 临汾有什么大学| 性生活是什么| 网络诈骗打什么电话| 白兰地兑什么饮料好喝| dunk是什么牌子| 硬皮病是什么病| 守株待兔是什么生肖| 六冲是什么意思| 西咪替丁是治什么病| coco什么意思| 狗狗犬窝咳吃什么药| 开户名是什么| 尿检ph值是什么意思| 玫瑰痤疮吃什么药| 绿豆汤为什么是红色的| 全身骨头疼是什么原因| 益生菌有什么功效| 孕妇贫血吃什么好| 一什么春天| 心脏是什么组织| 荔枝对身体有什么好处| 五月十二号是什么日子| 百度Jump to content

高尔夫6安博士隔音+美国曼菲斯MCX6套装+摩乐歌R6D套

From Wikipedia, the free encyclopedia
百度 毫无疑问,这个进球对于林加德具有非常意义,本场表现出色的他,只要不出现严重伤病,应该可以获得参加世界杯的资格。

Photoemission electron microscopy (PEEM, also called photoelectron microscopy, PEM) is a type of electron microscopy that utilizes local variations in electron emission to generate image contrast.[citation needed] The excitation is usually produced by ultraviolet light, synchrotron radiation or X-ray sources. PEEM measures the coefficient indirectly by collecting the emitted secondary electrons generated in the electron cascade that follows the creation of the primary core hole in the absorption process. PEEM is a surface sensitive technique because the emitted electrons originate from a shallow layer. In physics, this technique is referred to as PEEM, which goes together naturally with low-energy electron diffraction (LEED), and low-energy electron microscopy (LEEM). In biology, it is called photoelectron microscopy (PEM), which fits with photoelectron spectroscopy (PES), transmission electron microscopy (TEM),[1] and scanning electron microscopy (SEM).

History

[edit]
Early photoelectron emission microscope of E. Brüche at AEG, Berlin, reproduced from his 1933 paper

Initial development

[edit]

In 1933, Ernst Brüche reported images of cathodes illuminated by UV light. This work was extended by two of his colleagues, H. Mahl and J. Pohl. Brüche made a sketch of his photoelectron emission microscope in his 1933 paper (Figure 1).[2] This is evidently the first photoelectron emission microscope (PEEM).

Improved techniques

[edit]

In 1963, Gertrude F. Rempfer designed the electron optics for an early ultrahigh-vacuum (UHV) PEEM. In 1965, G. Burroughs at the Night Vision Laboratory, Fort Belvoir, Virginia built the bakeable electrostatic lenses and metal-sealed valves for PEEM. During the 1960s, in the PEEM, as well as TEM, the specimens were grounded and could be transferred in the UHV environment to several positions for photocathode formation, processing and observation. These electron microscopes were used for only a brief period of time, but the components live on. The first commercially available PEEM was designed and tested by Engel during the 1960s for his thesis work under E. Ruska and developed it into a marketable product, called the "Metioskop KE3", by Balzers in 1971. The electron lenses and voltage divider of the PEEM were incorporated into one version of a PEEM for biological studies in Eugene, Oregon around 1970.

Further research

[edit]

During the 1970s and 1980s the second generation (PEEM-2) and third generation (PEEM-3) microscopes were constructed. PEEM-2 is a conventional not aberration-corrected instrument employing electrostatic lenses. It uses a cooled charge-coupled device (CCD) fiber-coupled to a phosphor to detect the electron-optical image. The aberration corrected microscope PEEM-3 employs a curved electron mirror to counter the lowest order aberrations of the electron lenses and the accelerating field.

Background

[edit]

Photoelectric effect

[edit]

The photoemission or photoelectric effect is a quantum electronic phenomenon in which electrons (photoelectrons) are emitted from matter after the absorption of energy from electromagnetic radiation such as UV light or X-ray.

When UV light or X-ray is absorbed by matter, electrons are excited from core levels into unoccupied states, leaving empty core states. Secondary electrons are generated by the decay of the core hole. Auger processes and inelastic electron scattering create a cascade of low-energy electrons. Some electrons penetrate the sample surface and escape into vacuum. A wide spectrum of electrons is emitted with energies between the energy of the illumination and the work function of the sample. This wide electron distribution is the principal source of image aberration in the microscope.

Quantitative analysis

[edit]
Photoelectric effect
Schematic illustration of the photoemission process

Using Einstein's method, the following equations are used: energy of photon = energy needed to remove an electron + kinetic energy of the emitted electron

where

h is the Planck constant;
f is the frequency of the incident photon;
is the work function;
is the maximum kinetic energy of ejected electrons;
f0 is the threshold frequency for the photoelectric effect to occur;
m is the rest mass of the ejected electron;
vm is the speed of the ejected electron.

Electron emission microscopy

[edit]

Electron emission microscopy is a type of electron microscopy in which the information-carrying beam of electrons originates from the specimen itself. The energy source responsible for electron emission can be heat (thermionic emission), light (photoelectron emission), ions, or neutral particles, but typically excludes field emission and other methods involving point sources or tip-based microscopy.

Photoelectron imaging

[edit]

Photoelectron imaging includes any form of imaging in which the source of information is the distribution of points from which electrons are ejected from the specimen by the action of photons. The technique with the highest resolution photoelectron imaging is presently photoelectron emission microscopy using UV light.

Photoemission electron microscope

[edit]

A photoemission electron microscope is a parallel imaging instrument. It creates at any given moment a complete picture of the photoelectron distribution emitted from the imaged surface region.

Light sources

[edit]

The viewed area of the specimen must be illuminated homogeneously with appropriate radiation (ranging from UV to hard x-rays). UV light is the most common radiation used in PEEM because very bright sources are available, such as mercury lamps. However, other wavelengths (like soft x-rays) are preferred where analytical information is required.

Electron optical column and resolution

[edit]
Scheme of the photoemission electron microscope

The electron optical column contains two or more electrostatic or magnetic electron lenses, corrector elements such as a stigmator and deflector, an angle-limiting aperture in the backfocal plane of one of the lenses.

As in any emission electron microscope, the objective or cathode lens determines the resolution. The latter is dependent on the electron-optical qualities, such as spherical aberrations, and the energy spread of the photoemitted electrons. The electrons are emitted into the vacuum with an angular distribution close to a cosine square function. A significant velocity component parallel to the surface will decrease the lateral resolution. The faster electrons, leaving the surface exactly along the center line of the PEEM, will also negatively influence the resolution due to the chromatic aberration of the cathode lens. The resolution is inversely proportional to the accelerating field strength at the surface but proportional to the energy spread of the electrons. So resolution r is approximately:

Typical photoemission electron microscope

In the equation, d is the distance between the specimen and the objective, ΔE is the distribution width of the initial electron energies and U is the accelerating voltage.

Besides the cathode or objective lens, situated on the left hand side of Figure 4, two more lenses are utilized to create an image of the specimen: an intermediate three-electrode lens is used to vary the total magnification between 100× if the lens is deactivated, and up to 1000× when needed. On the right-hand side of Figure 4 is the projector, a three electrode lens combined with a two-element deceleration lens. The main task of this lens combination is the deceleration of the fast 20 keV electrons to energies for which the channelplate has its highest sensitivity. Such an image intensifier has its best performance for impinging electrons with kinetic energies roughly about 1 keV.

Energy filter

[edit]

An energy filter can be added to the instrument in order to select the electrons that will contribute to the image. This option is particularly used for analytical applications of the PEEM. By using an energy filter, a PEEM microscope can be seen as imaging Ultra-violet photoelectron spectroscopy (UPS) or X-ray photoelectron spectroscopy (XPS). By using this method, spatially resolved photoemission spectra can be acquired with spatial resolutions on the 100 nm scale and with sub-eV resolution. Using such instrument, one can acquire elemental images with chemical state sensibility or work function maps. Also, since the photoelectron are emitted only at the very surface of the material, surface termination maps can be acquired.

Detector

[edit]

A detector is placed at the end of electron optical column. Usually, a phosphor screen is used to convert the electron image to a photon image. The choice of phosphor type is governed by resolution considerations. A multichannel plate detector that is imaged by a CCD camera can substitute phosphor screen.

Time-resolved PEEM

[edit]

Compared to many other electron microscopy techniques, time-resolved PEEM offers a very high temporal resolution of only a few femtoseconds with prospects of advancing it to the attosecond regime. The reason is that temporal electron pulse broadening does not deteriorate the temporal resolution because electrons are only used to achieve a high spatial resolution. The temporal resolution is reached by using very short light pulses in a pump-probe setup. A first pulse optically excites dynamics like surface plasmons on a sample surface and a second pulse probes the dynamics after a certain waiting time by photoemitting electrons. The photoemission rate is influenced by the local excitation level of the sample. Hence, spatial information about the dynamics on the sample can be gained. By repeating this experiment with a series of waiting times between pump and probe pulse, a movie of the dynamics on a sample can be recorded.

Laser pulses in the visible spectral range are typically used in combination with a PEEM. They offer a temporal resolution of a few to 100 fs. In recent years, pulses with shorter wavelengths have been used to achieve a more direct access to the instantaneous electron excitation in the material. Here, a first pulse in the visible excites dynamics near the sample surface and a second pulse with a photon energy significantly above the work function of the material emits the electrons. By employing additional time-of-flight or high-pass energy recording in the PEEM, information about the instantaneous electronic distribution in a nanostructure can be extracted with high spatial and temporal resolution.

Efforts to achieve attosecond temporal resolution and with that directly record optical fields around nanostructures with so far unreached spatio-temporal resolution, are still ongoing.

Limitations

[edit]

The general limitation of PEEM, which is common with most surface science methods, is that the PEEM operates only under fairly restricted vacuum conditions. Whenever electrons are used to excite a specimen or carry information from its surface there has to be a vacuum with an appropriate mean free path for the electrons. With in-situ PEEM techniques, water and aqueous solution can be observed by PEEM.

The resolution of PEEM is limited to about 10 nm, which results from a spread of the photoelectron emission angle. Angle resolved photoemission spectroscopy (ARPES) is a powerful tool for structure analysis. However, it may be difficult to make angle-resolved and energy-selective PEEM measurements because of a lack of intensity. The availability of synchrotron-radiation light sources can offer exciting possibilities in this regard.

Comparison with other techniques

[edit]

Transmission electron microscopy (TEM) and scanning electron microscopy (SEM): PEEM differs from these two microscopies by using an electric accelerating field at the surface of specimen. The specimen is part of the electron-optical system.

Low-energy electron microscopy (LEEM) and mirror electron microscopy (MEM): these two electron emission microscopy use electron gun supply beams which are directed toward the specimen, decelerated and backscattered from the specimen or reflected just before reaching the specimen. In photoemission electron microscopy (PEEM) the same specimen geometry and immersion lens are used, but the electron guns are omitted.

New PEEM technologies

[edit]

Time resolved photoemission electron microscopy (TR-PEEM) is well suited for real-time observation of fast processes on surfaces equipped with pulsed synchrotron radiation for illumination.[3][4]

  • Time-of-flight Photoemission electron microscopy (TOF-PEEM): TOF-PEEM is PEEM using an ultrafast gated CCD camera or a time-and space-resolving counting detector for observing fast processes on surfaces.
  • Multiphoton Photoemission electron microscopy: Multiphoton PEEM can be employed for the study of localized surface plasmon excitations in nanoclusters or for direct spatial observation of the hot-electron lifetime in structured films using femtosecond lasers.
  • PEEM in liquids and dense gases: The development of microfabricated thin liquid cells in late 1990s enabled wide field-of-view transmission X-ray microscopy of liquid and gaseous samples confined between two SiN membranes. In such a configuration, the vacuum side of the second membrane was coated with the photoemitting material and PEEM was used to record the spatial variations of the transmitted light.[5] True PEEM imaging of liquid interfaces in photoelectrons has been realized through ultrathin electron transparent membranes such as graphene.[6] Further development of the UHV compatible graphene liquid cells enabled studies of electrochemical and electrified liquid–solid interfaces with standard PEEM setups without the use of the differential pumping.[7][8]

Notes

[edit]
  1. ^ Buseck, Peter; Cowley, John; Eyring, Leroy (1988). High-Resolution Transmission Electron Microscopy and Associated Techniques. Oxford University Press.
  2. ^ Brüche, E. (2025-08-06). "Elektronenmikroskopische Abbildung mit lichtelektrischen Elektronen". Zeitschrift für Physik (in German). 86 (7): 448–450. Bibcode:1933ZPhy...86..448B. doi:10.1007/BF01341360. ISSN 0044-3328. S2CID 115934468.
  3. ^ Schmidt, O.; Bauer, M.; Wiemann, C.; Porath, R.; Scharte, M.; Andreyev, O.; Sch?nhense, G.; Aeschlimann, M. (11 February 2014). "Time-resolved two photon photoemission electron microscopy". Applied Physics B. 74 (3): 223–227. doi:10.1007/s003400200803. S2CID 53560447.
  4. ^ Krasyuk, A.; Oelsner, A.; Nepijko, S.A.; Kuksov, A.; Schneider, C.M.; Sch?nhense, G. (1 April 2003). "Time-resolved photoemission electron microscopy of magnetic field and magnetisation changes". Applied Physics A: Materials Science & Processing. 76 (6): 863–868. Bibcode:2003ApPhA..76..863K. doi:10.1007/s00339-002-1965-8. S2CID 122579671.
  5. ^ De Stasio, G.; Gilbert, B.; Nelson, T.; Hansen, R.; Wallace, J.; Mercanti, D.; Capozi, M.; Baudat, P. A.; Perfetti, P.; Margaritondo, G.; Tonner, B. P. (January 2000). "Feasibility tests of transmission x-ray photoelectron emission microscopy of wet samples". Review of Scientific Instruments. 71 (1): 11–14. Bibcode:2000RScI...71...11D. doi:10.1063/1.1150151.
  6. ^ Guo, H.; Strelcov, E.; Yulaev, A.; Wang, J.; Appathurai, N.; Urquhart, S.; Vinson, J.; Sahu, S.; Zwolak, M.; Kolmakov, A. (30 January 2017). "Enabling Photoemission Electron Microscopy in Liquids via Graphene-Capped Microchannel Arrays". Nano Letters. 17 (2): 1034–1041. arXiv:1611.07639. Bibcode:2017NanoL..17.1034G. doi:10.1021/acs.nanolett.6b04460. PMC 5436695. PMID 28121153.
  7. ^ Nem?ák, S.; Strelcov, E.; Duchoň, T.; Guo, H.; Hackl, J.; Yulaev, A.; Vlassiouk, I.; Mueller, D. N.; Schneider, C. M.; Kolmakov, A. (27 November 2017). "Interfacial Electrochemistry in Liquids Probed with Photoemission Electron Microscopy". Journal of the American Chemical Society. 139 (50): 18138–18141. doi:10.1021/jacs.7b07365. PMC 5870841. PMID 29148738.
  8. ^ Nem?ák, S.; Strelcov, E.; Guo, H.; Hoskins, B. D.; Duchoň, T.; Mueller, D. N.; Yulaev, A.; Vlassiouk, I.; Tselev, A.; Schneider, C. M.; Kolmakov, A. (7 February 2018). "In aqua electrochemistry probed by XPEEM: experimental setup, examples, and challenges". arXiv:1802.02545 [cond-mat.mtrl-sci].

References

[edit]
  • Magnetic Microscopy of Nanostructures. Hopster, H. (Herbert), Oepen, H. P. (1st ed.). Berlin: Springer. 2004. ISBN 3-540-40186-5. OCLC 619242946.{{cite book}}: CS1 maint: others (link)
  • James A. Samson, David L. Ederer (1998). Vacuum Ultraviolet Spectroscopy. Academic Press ISBN 0-12-617560-8
  • Hayes Griffith, O.; Engel, Wilfried (2025-08-06). "Historical perspective and current trends in emission microscopy, mirror electron microscopy and low-energy electron microscopy". Ultramicroscopy. 36 (1): 1–28. doi:10.1016/0304-3991(91)90135-S. ISSN 0304-3991. PMID 1882483.
  • Andrzej Wieckowski, Elena R. Savinova, Constantinos G. Vayenas (2003). Catalysis and Electrocatalysis at Nanoparticle Surfaces. CRC Press ISBN 0-8247-0879-2
  • Harm Hinrich Rotermund. Imaging of Dynamic Processes on Surface by Light. Surface Science Reports, 29 (1997) 265-364
  • E. Bauer, M. Mundschau, W. Sweich, W. Telieps. Surface Studies by Low-energy Electron Microscopy (LEEM) and Conventional UV Photoemission Electron Microscopy (PEEM). Ultramicroscopy, 31 (1989) 49-57
  • W. Engel, M. Kordesch, H.H. Rotermund, S. Kubala, A. von Oertzen. A UHV-compatible photoelectron emission microscope for applications in surface science. Ultramicroscopy, 36 (1991) 148-153
  • H.H. Rotermund, W. Engel, M. Kordesch, G. Ertl. Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum. Nature, 343 (1990) 355-357
  • H.H. Rotermund, W. Engel, S. Jakubith, A. von Oertzen, G. Ertl. Methods and application of UV photoelectron microscopy in heterogeneous catalysis. Ultramicroscopy, 36 (1991) 164-172
  • O. Renault, N. Barrett, A. Bailly, L.F. Zagonel, D. Mariolle, J.C. Cezar, N.B. Brookes, K. Winkler, B. Kr?mker and D. Funnemann, Energy-filtered XPEEM with NanoESCA using synchrotron and laboratory X-ray sources: Principles and first demonstrated results; Surface Science, Volume 601, Issue 20, 15 October 2007, Pages 4727–4732. doi:10.1016/j.susc.2007.05.061
[edit]
白蜡金命五行缺什么 狐臭是什么引起的 中联办是什么级别 什么是职业 白露节气的含义是什么
肠道易激惹综合症是什么症状 网友见面叫什么 荨麻疹抹什么药 世界杯是什么时候 淋巴发炎吃什么药
人脱水了会有什么表现 梦见鸡死了是什么预兆 送什么礼物 脾大对身体有什么影响 海参为什么越小越贵
为什么感觉 女人小便疼是什么原因 为什么不建议年轻人做肠镜 h代表什么意思 银耳和什么一起煮最好
肌酐高有什么症状520myf.com 小孩心肌炎有什么症状hcv8jop7ns0r.cn 东方为什么红hcv8jop8ns1r.cn 肌酐偏高是什么意思hcv7jop5ns5r.cn 肾上腺素是什么意思naasee.com
胆红素阴性是什么意思hcv9jop5ns2r.cn 王属什么五行hcv9jop5ns5r.cn 事无巨细是什么意思hcv9jop1ns8r.cn 指甲变紫色是什么原因hcv8jop4ns7r.cn 比心是什么意思hcv9jop7ns9r.cn
桂附地黄丸治什么病hcv9jop3ns1r.cn lirs 是什么意思hcv9jop1ns2r.cn 迪奥是什么意思jiuxinfghf.com 教师节应该送老师什么花hcv9jop6ns7r.cn dht是什么意思hcv8jop1ns9r.cn
胃溃疡吃什么中成药fenrenren.com 11月20号是什么星座hcv8jop5ns8r.cn 阴山是今天的什么地方jiuxinfghf.com 心塞是什么意思hcv8jop0ns3r.cn 喉咙痛去药店买什么药ff14chat.com
百度