为什么一进去就软了| 盥洗是什么意思| 雅丹是什么意思| 红花泡脚有什么好处| 女生怀孕的前兆是什么| 市政府秘书长什么级别| 灵魂契合是什么意思| 腰肌劳损是什么症状| 发烧为什么感觉冷| 自我安慰是什么意思| 悠悠是什么意思| 四肢百骸是什么意思| 脾稍大什么意思| hpv高危是什么意思| 正财代表什么| 缺铁性贫血吃什么药最好| 开塞露是干什么用的| 卷心菜是什么菜| 什么的旋律| 焦虑挂什么科| 什么头什么脑| 付诸行动是什么意思| 欲钱知吃月饼是什么生肖| 班别是什么意思| 离婚需要带什么证件| 木薯粉可以做什么美食| 怀孕第一个月有什么反应| 伞裙搭配什么上衣| 蚊子讨厌什么气味| imax是什么意思| 头皮发红是什么原因| 喝什么利尿效果最好| 便秘吃什么蔬菜| 痱子粉什么牌子好| 04年属什么| 杏花代表什么生肖| 什么疾什么快| 经常拉肚子是什么原因引起的| 为什么手脚老是出汗| 肾上腺素是什么| 月经多是什么原因| ut是什么意思| 幼小衔接班是什么意思| 肩膀疼应该挂什么科| 兔和什么属相最配| 股骨头坏死是什么原因引起的| 核糖体由什么组成| 省委组织部长是什么级别| 腋臭去医院挂什么科| o2o是什么意思| 扁桃体发炎是什么原因引起的| 农历3月是什么星座| 什么样的女人性欲强| 海南简称是什么| 11月10日是什么星座| 日复一日是什么意思| 吃什么补叶酸最快| 登字五行属什么| 左脚麻是什么原因| 潮湿是什么意思| 在所不辞是什么意思| 难怪是什么意思| 连续做噩梦是什么原因| 飞机什么不能带| 月经期后是什么期| 一个口一个者念什么| 鲁班是什么家| h皮带是什么牌子| 学业有成是什么意思| 起风疹的原因是什么引起的| 白玫瑰的花语是什么| 韩愈是什么朝代的| 太多的理由太多的借口是什么歌| 夏枯草是什么样子| 暴发火眼吃什么药| apf值是什么意思| 什么是ts| 海石花是什么| 葫芦鸡为什么叫葫芦鸡| 眼花缭乱什么意思| 老汉是什么意思| 意境是什么意思| 颈动脉彩超挂什么科| 做梦梦到蜘蛛是什么意思| 植物神经紊乱吃什么中成药| 降甘油三酯吃什么食物最好| 同舟共济是什么意思| 什么车最长| 开化龙顶属于什么茶| 罗网是什么意思| 池字五行属什么| 十万左右买什么车好| 无印良品属于什么档次| 抗角蛋白抗体阳性是什么意思| 最好的假牙是什么材质| 无花果有什么作用| hpv是什么引起的| 英语专八是什么水平| 鼓风机是干什么用的| 1129什么星座| 拔完智齿后需要注意什么| 何方珠宝是什么档次| 不明觉厉什么意思| 地素女装属于什么档次| 邓超的老婆叫什么名字| 景页读什么| 达芬奇是干什么的| 做什么生意挣钱| 粉瘤不切除有什么危害| 腹腔肠系膜淋巴结是什么病| c2是什么| 温碧泉属于什么档次| 霉菌性阴道炎用什么药效果好| 嗓子干痒是什么原因| 感冒咳嗽一直不好是什么原因| 南京都有什么大学| 38属什么| 把尿是什么意思| 痛风吃什么| 翡翠和玉的区别是什么| 桃子有什么营养价值| 口腔发苦是什么原因| 乱伦是什么| 免疫性疾病是什么意思| tim是什么| 肝郁是什么意思| 什么样的人容易高反| 嘴角长水泡是什么原因| 见红是什么样的| 杏仁有什么作用| 竖心旁的字有什么| 牛的尾巴有什么作用| 拉姆是什么意思| 做春梦是什么原因| 刘备是个什么样的人| 流明是什么意思| 196是什么意思| 双肺钙化灶是什么意思| 双下肢静脉彩超主要检查什么| 成是什么生肖| 丙肝病毒抗体阴性是什么意思| 葡萄胎是什么| 钱串子进屋有什么预兆| slc是什么意思| 矫枉过正什么意思| 聚什么会什么| 冰菜是什么菜| 小妮子是什么意思| 芋圆是什么做的| 毕业送老师什么礼物好| 64年属什么的| 山药补什么| 黄曲霉菌是什么颜色| 什么是危险期| 密度是什么| 怀孕了为什么还会出血| 出生医学证明有什么用| 蛇配什么生肖最好| 什么时候可以上环最好的| 除湿气吃什么| 唇红齿白是什么生肖| 花对什么| 肾在五行中属什么| 心口痛挂什么科| 来月经有异味什么原因| 左室高电压是什么意思| 低gi什么意思| kalenji是什么品牌| 撒西不理是什么意思| 什么品牌的床好| 健康证需要什么| 更年期出汗吃什么药| 零申报是什么意思| 梦见捡钱了是什么预兆| 蜂胶有什么作用和功效| 月经喝什么比较好| 腹膜透析是什么意思| 吃海鲜不能吃什么| 寸关尺代表什么器官| 心火旺吃什么中药| 嗓子咽口水疼吃什么药| 什么是职业| 右手臂痛是什么预兆| 车厘子是什么| 什么是靶向药| 吃氨糖有什么副作用| 相是什么意思| 菩提萨婆诃是什么意思| 恶性贫血是什么意思| 烂尾楼是什么意思| 大卡是什么意思| 频次是什么意思| 四川属于什么气候| 舌头臭是什么原因| 激素6项什么时候查| 护士是干什么的| 维生素b12治什么病| 肌肉拉伤吃什么药| 过堂是什么意思| 嘴唇暗紫色是什么原因| 什么样的油菜花| 豆浆配什么主食当早餐| 什么叫处方药| close什么意思| 检查幽门螺杆菌挂什么科| 运气是什么意思| 为什么精液是流出来的| 西游记告诉我们什么道理| 喝啤酒有什么好处| 气血亏吃什么补的快| rv医学上是什么意思| 眼睛充血是什么原因造成的| 乌梅是什么水果做的| 朝鲜钱币叫什么| o型血和a型血生的孩子是什么血型| 冲突是什么意思| 合加龙是什么字| 咖啡因是什么东西| 下腹疼是什么原因| 推崇是什么意思| 脱肛是什么原因造成的| 血压低吃什么药| 生化全项包括什么| 梦到被蜜蜂蛰是什么意思| 第一次需要注意什么| 梦见陌生人死了是什么意思| 叒怎么读音是什么意思| pc是什么| 为什么手老是出汗| 什么是舒张压和收缩压| 下午2点半是什么时辰| 丝瓜是什么| 疤痕增生挂什么科| 浅表性胃炎吃什么药好使| 无可奈何什么意思| 火龙果和什么相克| 主诉是什么意思| 净身是什么意思| 十月23日是什么星座| 四月十六日是什么星座| 大小周休息是什么意思| 前庭功能是什么意思| 十月二十五是什么星座| 黑松露什么味道| 贝珠是什么| 拉分是什么意思| 鞭炮笋学名叫什么| 书记是什么职位| 野生葛根粉有什么功效| 牙齿黄是什么原因造成的| 担担面是什么面| 羊肉不放什么调料| 胳膊困疼是什么原因| 巡视员什么级别| 梦见生孩子是什么意思| 自强是什么意思| 舌苔白吃什么药| 女性尿里带血是什么原因| 倾巢出动是什么意思| 阿胶烊化是什么意思| 囧是什么意思| 安乃近是什么药| lca是什么意思| 弱水三千是什么意思| 百度Jump to content

From Wikipedia, the free encyclopedia
百度 一部中华人民共和国的历史,就是中国共产党的执政史,也是党领导中国各族人民建设新社会、新国家的历史。

In machine learning, a neural field (also known as implicit neural representation, neural implicit, or coordinate-based neural network), is a mathematical field that is fully or partially parametrized by a neural network. Initially developed to tackle visual computing tasks, such as rendering or reconstruction (e.g., neural radiance fields), neural fields emerged as a promising strategy to deal with a wider range of problems, including surrogate modelling of partial differential equations, such as in physics-informed neural networks.[1]

Differently from traditional machine learning algorithms, such as feed-forward neural networks, convolutional neural networks, or transformers, neural fields do not work with discrete data (e.g. sequences, images, tokens), but map continuous inputs (e.g., spatial coordinates, time) to continuous outputs (i.e., scalars, vectors, etc.). This makes neural fields not only discretization independent, but also easily differentiable. Moreover, dealing with continuous data allows for a significant reduction in space complexity, which translates to a much more lightweight network.[1]

Formulation and training

[edit]

According to the universal approximation theorem, provided adequate learning, sufficient number of hidden units, and the presence of a deterministic relationship between the input and the output, a neural network can approximate any function to any degree of accuracy.[2]

Hence, in mathematical terms, given a field , with and , a neural field , with parameters , is such that[1]:

Training

[edit]

For supervised tasks, given examples in the training dataset (i.e., ), the neural field parameters can be learned by minimizing a loss function (e.g., mean squared error). The parameters that satisfy the optimization problem are found as[1][3][4]:Notably, it is not necessary to know the analytical expression of , for the previously reported training procedure only requires input-output pairs. Indeed, a neural field is able to offer a continuous and differentiable surrogate of the true field, even from purely experimental data.[1]

Moreover, neural fields can be used in unsupervised settings, with training objectives that depend on the specific task. For example, physics-informed neural networks may be trained on just the residual.[4]

Spectral bias

[edit]

As for any artificial neural network, neural fields may be characterized by a spectral bias (i.e., the tendency to preferably learn the low frequency content of a field), possibly leading to a poor representation of the ground truth.[5] In order to overcome this limitation, several strategies have been developed. For example, SIREN uses sinusoidal activations,[6] while the Fourier-features approach embeds the input through sines and cosines.[7]

Conditional neural fields

[edit]

In many real-world cases, however, learning a single field is not enough. For example, when reconstructing 3D vehicle shapes from Lidar data, it is desirable to have a machine learning model that can work with arbitrary shapes (e.g., a car, a bicycle, a truck, etc.). The solution is to include additional parameters, the latent variables (or latent code) , to vary the field and adapt it to diverse tasks.[1]

Latent code production

[edit]
Conditional neural field with encoder; scheme
Conditional neural field with encoder
Auto-decoding conditional neural field; scheme
Auto-decoding conditional neural field

When dealing with conditional neural fields, the first design choice is represented by the way in which the latent code is produced. Specifically, two main strategies can be identified:[1]

  • Encoder: the latent code is the output of a second neural network, acting as an encoder. During training, the loss function is the objective used to learn the parameters of both the neural field and the encoder.[8]
  • Auto-decoding: each training example has its own latent code, jointly trained with the neural field parameters. When the model has to process new examples (i.e., not originally present in the training dataset), a small optimization problem is solved, keeping the network parameters fixed and only learning the new latent variables.[9]

Since the latter strategy requires additional optimization steps at inference time, it sacrifices speed, but keeps the overall model smaller. Moreover, despite being simpler to implement, an encoder may harm the generalization capabilities of the model.[1] For example, when dealing with a physical scalar field (e.g., the pressure of a 2D fluid), an auto-decoder-based conditional neural field can map a single point to the corresponding value of the field, following a learned latent code .[10] However, if the latent variables were produced by an encoder, it would require access to the entire set of points and corresponding values (e.g. as a regular grid or a mesh graph), leading to a less robust model.[1]

Global and local conditioning

[edit]

In a neural field with global conditioning, the latent code does not depend on the input and, hence, it offers a global representation (e.g., the overall shape of a vehicle). However, depending on the task, it may be more useful to divide the domain of in several subdomains, and learn different latent codes for each of them (e.g., splitting a large and complex scene in sub-scenes for a more efficient rendering). This is called local conditioning.[1]

Conditioning strategies

[edit]

There are several strategies to include the conditioning information in the neural field. In the general mathematical framework, conditioning the neural field with the latent variables is equivalent to mapping them to a subset of the neural field parameters[1]:In practice, notable strategies are:

  • Concatenation: the neural field receives, as input, the concatenation of the original input with the latent codes . For feed-forward neural networks, this is equivalent to setting as the bias of the first layer and as an affine transformation.[1]
  • Hypernetworks: a hypernetwork is a neural network that outputs the parameters of another neural network.[11] Specifically, it consists of approximating with a neural network , where are the trainable parameters of the hypernetwork. This approach is the most general, as it allows to learn the optimal mapping from latent codes to neural field parameters. However, hypernetworks are associated to larger computational and memory complexity, due to the large number of trainable parameters. Hence, leaner approaches have been developed. For example, in the Feature-wise Linear Modulation (FiLM), the hypernetwork only produces scale and bias coefficients for the neural field layers.[1][12]

Meta-learning

[edit]

Instead of relying on the latent code to adapt the neural field to a specific task, it is also possible to exploit gradient-based meta-learning. In this case, the neural field is seen as the specialization of an underlying meta-neural-field, whose parameters are modified to fit the specific task, through a few steps of gradient descent.[13][14] An extension of this meta-learning framework is the CAVIA algorithm, that splits the trainable parameters in context-specific and shared groups, improving parallelization and interpretability, while reducing meta-overfitting. This strategy is similar to the auto-decoding conditional neural field, but the training procedure is substantially different.[15]

Applications

[edit]

Thanks to the possibility of efficiently modelling diverse mathematical fields with neural networks, neural fields have been applied to a wide range of problems:

Neural radiance field (NeRF) pipeline
Neural radiance field (NeRF) pipeline
Scheme of the CORAL architecture, using conditional neural fields for operator learning
CORAL architecture: operator learning with neural fields

See also

[edit]

References

[edit]
  1. ^ a b c d e f g h i j k l m n o p q r s t Xie, Yiheng; Takikawa, Towaki; Saito, Shunsuke; Litany, Or; Yan, Shiqin; Khan, Numair; Tombari, Federico; Tompkin, James; Sitzmann, Vincent; Sridhar, Srinath (2022). "Neural Fields in Visual Computing and Beyond". Computer Graphics Forum. 41 (2): 641–676. doi:10.1111/cgf.14505. ISSN 1467-8659.
  2. ^ Hornik, Kurt; Stinchcombe, Maxwell; White, Halbert (2025-08-07). "Multilayer feedforward networks are universal approximators". Neural Networks. 2 (5): 359–366. doi:10.1016/0893-6080(89)90020-8. ISSN 0893-6080.
  3. ^ Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). Deep learning. Adaptive computation and machine learning. Cambridge, Mass: The MIT press. ISBN 978-0-262-03561-3.
  4. ^ a b c Quarteroni, Alfio; Gervasio, Paola; Regazzoni, Francesco (2025-08-07), Combining physics-based and data-driven models: advancing the frontiers of research with Scientific Machine Learning, arXiv, doi:10.48550/arXiv.2501.18708, arXiv:2501.18708, retrieved 2025-08-07
  5. ^ Rahaman, Nasim; Baratin, Aristide; Arpit, Devansh; Draxler, Felix; Lin, Min; Hamprecht, Fred A.; Bengio, Yoshua; Courville, Aaron (2025-08-07), On the Spectral Bias of Neural Networks, arXiv, doi:10.48550/arXiv.1806.08734, arXiv:1806.08734, retrieved 2025-08-07
  6. ^ Sitzmann, Vincent; Martel, Julien N. P.; Bergman, Alexander W.; Lindell, David B.; Wetzstein, Gordon (2025-08-07), Implicit Neural Representations with Periodic Activation Functions, arXiv, doi:10.48550/arXiv.2006.09661, arXiv:2006.09661, retrieved 2025-08-07
  7. ^ Tancik, Matthew; Srinivasan, Pratul P.; Mildenhall, Ben; Fridovich-Keil, Sara; Raghavan, Nithin; Singhal, Utkarsh; Ramamoorthi, Ravi; Barron, Jonathan T.; Ng, Ren (2025-08-07), Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains, arXiv, doi:10.48550/arXiv.2006.10739, arXiv:2006.10739, retrieved 2025-08-07
  8. ^ Qi, Charles R.; Su, Hao; Mo, Kaichun; Guibas, Leonidas J. (2025-08-07), PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, arXiv, doi:10.48550/arXiv.1612.00593, arXiv:1612.00593, retrieved 2025-08-07
  9. ^ a b Park, Jeong Joon; Florence, Peter; Straub, Julian; Newcombe, Richard; Lovegrove, Steven (2025-08-07), DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, arXiv, doi:10.48550/arXiv.1901.05103, arXiv:1901.05103, retrieved 2025-08-07
  10. ^ a b Serrano, Louis; Boudec, Lise Le; Koupa?, Armand Kassa?; Wang, Thomas X.; Yin, Yuan; Vittaut, Jean-No?l; Gallinari, Patrick (2025-08-07), Operator Learning with Neural Fields: Tackling PDEs on General Geometries, arXiv, doi:10.48550/arXiv.2306.07266, arXiv:2306.07266, retrieved 2025-08-07
  11. ^ Ha, David; Dai, Andrew; Le, Quoc V. (2025-08-07), HyperNetworks, arXiv, doi:10.48550/arXiv.1609.09106, arXiv:1609.09106, retrieved 2025-08-07
  12. ^ Perez, Ethan; Strub, Florian; Vries, Harm de; Dumoulin, Vincent; Courville, Aaron (2025-08-07), FiLM: Visual Reasoning with a General Conditioning Layer, arXiv, doi:10.48550/arXiv.1709.07871, arXiv:1709.07871, retrieved 2025-08-07
  13. ^ Finn, Chelsea; Abbeel, Pieter; Levine, Sergey (2025-08-07), Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, arXiv, doi:10.48550/arXiv.1703.03400, arXiv:1703.03400, retrieved 2025-08-07
  14. ^ Sitzmann, Vincent; Chan, Eric R.; Tucker, Richard; Snavely, Noah; Wetzstein, Gordon (2025-08-07), MetaSDF: Meta-learning Signed Distance Functions, arXiv, doi:10.48550/arXiv.2006.09662, arXiv:2006.09662, retrieved 2025-08-07
  15. ^ Zintgraf, Luisa M.; Shiarlis, Kyriacos; Kurin, Vitaly; Hofmann, Katja; Whiteson, Shimon (2025-08-07), Fast Context Adaptation via Meta-Learning, arXiv, doi:10.48550/arXiv.1810.03642, arXiv:1810.03642, retrieved 2025-08-07
  16. ^ Mescheder, Lars; Oechsle, Michael; Niemeyer, Michael; Nowozin, Sebastian; Geiger, Andreas (2025-08-07), Occupancy Networks: Learning 3D Reconstruction in Function Space, arXiv, doi:10.48550/arXiv.1812.03828, arXiv:1812.03828, retrieved 2025-08-07
  17. ^ Mildenhall, Ben; Srinivasan, Pratul P.; Tancik, Matthew; Barron, Jonathan T.; Ramamoorthi, Ravi; Ng, Ren (2025-08-07), NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, arXiv, doi:10.48550/arXiv.2003.08934, arXiv:2003.08934, retrieved 2025-08-07
  18. ^ Raissi, M.; Perdikaris, P.; Karniadakis, G. E. (2025-08-07). "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations". Journal of Computational Physics. 378: 686–707. doi:10.1016/j.jcp.2018.10.045. ISSN 0021-9991.
  19. ^ Yin, Yuan; Kirchmeyer, Matthieu; Franceschi, Jean-Yves; Rakotomamonjy, Alain; Gallinari, Patrick (2025-08-07), Continuous PDE Dynamics Forecasting with Implicit Neural Representations, arXiv, doi:10.48550/arXiv.2209.14855, arXiv:2209.14855, retrieved 2025-08-07
[edit]


总掉头发是什么原因 中暑吃什么好得快 奖励是什么意思 月经前腰疼的厉害是什么原因 感冒什么症状
菊花茶为什么会变绿色 低密度脂蛋白胆固醇高是什么意思 出国要办什么证件 不苟言笑的苟是什么意思 喝什么水去火
gn什么意思 中字五行属什么 梦见种地是什么意思 天无二日指什么生肖 猪跟什么生肖配对最好
阴唇为什么会长痘痘 端倪是什么意思 时来运转是什么意思 猫有什么病会传染给人 不睡人的空床放点什么
草酸是什么cl108k.com 兵部尚书相当于现在的什么官hcv8jop0ns8r.cn 来大姨妈拉肚子是什么原因hcv7jop5ns4r.cn 肛门坠胀吃什么消炎药hcv7jop7ns1r.cn 上皮内低度病变是什么意思hcv8jop7ns8r.cn
炸酥肉用什么粉hcv8jop6ns8r.cn 62年属什么生肖hcv9jop1ns1r.cn 孩子张嘴睡觉是什么原因hcv8jop6ns1r.cn 祖宗是什么意思clwhiglsz.com 甲沟炎涂抹什么药膏最有效hcv9jop5ns9r.cn
为什么订婚后容易分手hcv8jop4ns8r.cn ur是什么意思hcv8jop4ns7r.cn 喜悦之情溢于言表什么意思hcv8jop4ns1r.cn 25年是什么婚hcv9jop1ns0r.cn choice是什么意思hcv8jop8ns7r.cn
草字头一个见念什么hcv8jop7ns3r.cn 什么深似海hcv8jop2ns6r.cn 感冒了吃什么水果比较好hcv8jop8ns1r.cn 熟视无睹什么意思hcv7jop6ns7r.cn 南昌有什么好玩的景点hcv8jop0ns4r.cn
百度