天蓝色配什么颜色| 什么是什么的摇篮| 脾挂什么科| 热锅上的蚂蚁是什么意思| 为什么老是想吐| 丁香茶有什么作用和功效| 痰涎壅盛是什么意思| 门前的小树已成年是什么歌| 腹泻可以吃什么食物| 牛黄安宫丸治什么病| 四百多分能上什么大学| 小麦淀粉可以做什么| dha不能和什么一起吃| 比肩什么意思| 属猪的贵人属相是什么| 胯骨疼挂什么科| 吃什么对肠胃好| 尿常规隐血弱阳性什么意思| 白细胞酯酶阳性是什么意思| 尿hcg阴性是什么意思| 唇色深的人适合什么颜色的口红| 发低烧吃什么药| 69岁属什么| 猫腻是什么意思| 什么球不能拍| 什么什么泪下| ons是什么| 痛风不能吃什么蔬菜| 急性会厌炎吃什么药| 黑色素沉淀是什么原因引起的| 薪字五行属什么| 锻炼是什么意思| 非球面镜片是什么意思| 皮肤溃烂化脓用什么药| 夜尿多吃什么药| 拍手腕中间有什么好处| 口腔溃疡要吃什么药| 尿酸高有什么症状表现| 腿抽筋吃什么钙片好| 为什么不建议小孩吃罗红霉素| 眼睛痛吃什么药好得快| 罗非鱼吃什么食物| 河东狮吼什么意思| 母亲节是什么时候| 去迪拜打工需要什么条件| 核辐射是什么意思| 自食其力是什么意思| 想念是什么意思| 德国什么东西值得买| 低血糖和贫血有什么区别| 为什么小腿肌肉酸痛| 肠粉是用什么材料做的| ab型血可以输什么血| 维多利亚是什么意思| 约炮是什么意思| 上热下寒吃什么药| 天蝎座什么象星座| 柳下惠姓什么| 刮宫和清宫有什么区别| 什么农药最毒| 星星像什么比喻句| 脚麻木吃什么药| 梦见小黑蛇是什么预兆| 乙型肝炎e抗体阳性是什么意思| 最是什么意思| 我操是什么意思| 六月二十一是什么日子| cba什么意思| 尿蛋白是什么原因| 正月初一是什么节日| 嫑怹是什么意思| 上海有什么特产| 什么多么什么| 孕妇梦到老公出轨什么意思| 大佐相当于中国的什么军衔| 什么洗发水去屑好| 广肚是什么| 小孩肚脐眼周围疼是什么原因| 烟酸是什么| 苏州为什么叫姑苏| 才貌双全是什么生肖| 手指尖麻木是什么原因| 叒怎么读音是什么意思| 吃的多拉的少是什么原因| 私通是什么意思| 突然发热是什么原因| 肺部挂什么科| 人乳头瘤病毒18型阳性是什么意思| 11月28日是什么星座| 半身不遂是什么意思| 疝外科是治什么病的| 虎视眈眈是什么意思| 今年26岁属什么生肖| 姨妈安全期是什么时候| 草龟吃什么食物| 手掌发黄是什么原因| 为什么老是打喷嚏| 肉蒲团是什么| 嗳腐吞酸是什么意思| 不孕不育挂什么科| 什么是阴沉木| 看望病人送什么东西| 什么的银发| 执业药师是干什么的| 卿本佳人什么意思| 酸梅汤有什么功效| 泥鳅吃什么食物| 激素药是什么意思| hcg偏高是什么原因| 肝钙化灶是什么意思| 冥寿是什么意思| 梦见情敌什么预兆| 冬阴功汤都放什么食材| 感冒吃什么水果比较好| 扎马步有什么好处| 3月29日是什么星座| 烫伤起泡用什么药膏| hcg稀释是什么意思| 心肌缺血吃什么药最好| 痔疮是什么原因引起的| 牡丹花是什么颜色的| 慢性萎缩性胃炎吃什么药可以根治| 消化快容易饿什么原因| 1979年是什么命| 内分泌紊乱有什么症状表现| 8月11日是什么星座| ngs什么意思| 同房后出血是什么原因| 引产和流产有什么区别| 活血化瘀吃什么药| 焦虑是什么意思| hy什么意思| 食蚁兽是什么动物| 胰腺炎吃什么药见效快| bjd是什么| 为什么喝咖啡会心慌| 种植牙有什么风险和后遗症| 74年大溪水命缺什么| 肟是什么意思| 全飞秒手术是什么| 伟岸一般形容什么人| 刀郎和那英是什么关系| 蒲公英什么功效| 天下乌鸦一般黑是什么意思| 冬眠灵是什么药| 女人长期喝西洋参有什么好处| 茯苓有什么功效| 预估是什么意思| 五指毛桃根有什么功效| 为什么尿液一直是黄的| 什么食物蛋白质含量最高| 欢乐海岸有什么好玩的| ber什么意思| 玉对人身体健康有什么好处| lbl是什么意思| 丹毒是什么病| 天天射精对身体有什么危害| 什么是动物奶油| 冰箱买什么牌子的好| 怀孕挂什么科| 部堂大人是什么职位| 什么是命题| 什么像什么似的什么造句| 飘了是什么意思| 痔疮什么感觉| 三生石是什么意思| 五脏六腑什么意思| 骨强度不足是什么原因| 什么地看| 为什么会便血| 内蒙古简称什么| 野餐带什么| 什么贵人能治孤辰寡宿| 拔罐颜色紫黑代表什么| u盾是什么| 牙痛安又叫什么| 女生下面流水是什么原因| 野蒜有什么功效和作用| 肾痛在什么位置痛| 出气臭是什么原因| 第一次坐飞机需要注意什么| 二杠四星是什么军衔| 聊胜于无什么意思| 医疗行业五行属什么| fk是什么意思| 辟谷是什么都不吃吗| 膝关节退行性改变是什么意思| 什么是法西斯| 令公子车祸隐藏了什么| 肝右叶钙化灶什么意思| 锻炼pc肌有什么好处| 71年的猪是什么命| 五三年属什么生肖| 扁桃体作用是什么| 萝莉控是什么意思| 出大汗是什么原因| 24D是什么激素| 鬼斧神工是什么意思| 吊客是什么意思| moo是什么意思| 什么狗不掉毛适合家养| 中指麻木是什么原因引起的| 1996年属鼠五行属什么| 出单是什么意思| ctm是什么意思| 沙蚕是什么动物| 尿为什么是黄色的| 参详意思是什么| 治疗风湿有什么好方法| 万丈深渊是什么意思| 嗓子疼咳嗽挂什么科| 来月经吃什么排得最干净| 小狗的尾巴有什么作用| 厕所里应该摆什么花| 梦见水是什么意思| 老婆的弟弟叫什么| 乳头痒用什么药| 鞋子上eur是什么意思| 有什么别有病| 放我一个人生活是什么歌| 吃什么降血脂和胆固醇| 前列腺是什么病| 大便溏泄是什么意思| 黑色是什么颜色组成的| zzy是什么意思| 玉米淀粉可以做什么| 1014是什么星座| 上帝叫什么名字| 一般什么人会有美人尖| 高血糖适合吃什么主食| 湖北古代叫什么| 收心是什么意思| 昱读什么| 鼓动是什么意思| 容易放屁是什么原因| 肾漏蛋白是什么病| 梦见打麻将是什么意思| 肠易激综合症什么症状| 为什么不能天天做有氧运动| 梦见自己死了是什么预兆| 都市丽人是什么意思| iac是什么意思| 长期过敏是什么原因| 内衣什么品牌最好| 子女缘薄是什么意思| 生物工程是什么专业| 什么火锅最好吃| 咳嗽可以吃什么水果| 夏天喝什么解渴| 胸腔疼痛挂什么科| 贝母是什么| 老人助听器什么牌子好| 血漏是什么病| 同房后为什么会出血| domestic是什么意思| cvm是什么意思| 疖是什么意思| 孙红雷的老婆叫什么名字| 胃肠感冒吃什么食物比较好| 纸包鸡什么意思| 福建岩茶属于什么茶| a型血的人是什么性格| 宫颈纳氏囊肿什么意思| 吃蜂蜜不能吃什么食物| 百度Jump to content

三诺血糖仪操作使用视频

From Wikipedia, the free encyclopedia
Graviton
CompositionElementary particle
StatisticsBose–Einstein statistics
Familyspin-2 boson
InteractionsGravitation
StatusHypothetical
SymbolG[1]
Theorized1930s[2]
The name is attributed to Dmitry Blokhintsev and F. M. Gal'perin in 1934[3]
Mass0
< 6×10?32 eV/c2 [4]
Mean lifetimestable
Electric chargee
Color chargeNo
Spin?
百度 未达到初试基本线的考生不得参加复试。

In theories of quantum gravity, the graviton is the hypothetical elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string.

If it exists, the graviton is expected to be massless because the gravitational force has a very long range and appears to propagate at the speed of light. The graviton must be a spin-2 boson because the source of gravitation is the stress–energy tensor, a second-order tensor (compared with electromagnetism's spin-1 photon, the source of which is the four-current, a first-order tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field would couple to the stress–energy tensor in the same way gravitational interactions do. This result suggests that, if a massless spin-2 particle is discovered, it must be the graviton.[5]

Theory

[edit]

It is hypothesized that gravitational interactions are mediated by an as yet undiscovered elementary particle, dubbed the graviton. The three other known forces of nature are mediated by elementary particles: electromagnetism by the photon, the strong interaction by gluons, and the weak interaction by the W and Z bosons. All three of these forces appear to be accurately described by the Standard Model of particle physics. In the classical limit, a successful theory of gravitons would reduce to general relativity, which itself reduces to Newton's law of gravitation in the weak-field limit.[6][7][8]

History

[edit]

Albert Einstein discussed quantized gravitational radiation in 1916, the year following his publication of general relativity.[9]:?525? The term graviton was coined in 1934 by Soviet physicists Dmitry Blokhintsev and Fyodor Galperin [ru].[3][9] Paul Dirac reintroduced the term in a number of lectures in 1959, noting that the energy of the gravitational field should come in quanta.[10][11] A mediation of the gravitational interaction by particles was anticipated by Pierre-Simon Laplace.[12] Just like Newton's anticipation of photons, Laplace's anticipated "gravitons" had a greater speed than the speed of light in vacuum , the speed of gravitons expected in modern theories, and were not connected to quantum mechanics or special relativity, since these theories didn't yet exist during Laplace's lifetime.

Gravitons and renormalization

[edit]

When describing graviton interactions, the classical theory of Feynman diagrams and semiclassical corrections such as one-loop diagrams behave normally. However, Feynman diagrams with at least two loops lead to ultraviolet divergences.[13] These infinite results cannot be removed because quantized general relativity is not perturbatively renormalizable, unlike quantum electrodynamics and models such as the Yang–Mills theory. Therefore, incalculable answers are found from the perturbation method by which physicists calculate the probability of a particle to emit or absorb gravitons, and the theory loses predictive veracity. Those problems and the complementary approximation framework are grounds to show that a theory more unified than quantized general relativity is required to describe the behavior near the Planck scale.

Energy and wavelength

[edit]

While gravitons are presumed to be massless, they would still carry energy, as does any other quantum particle.[14] Photon energy and gluon energy are also carried by massless particles.

Alternatively, if gravitons are massive at all, the analysis of gravitational waves yielded a new upper bound on the mass of gravitons. The graviton's Compton wavelength is at least 1.6×1016 m, or about 1.6 light-years, corresponding to a graviton mass of no more than 7.7×10?23 eV/c2.[15] This relation between wavelength and mass-energy is calculated with the Planck–Einstein relation, the same formula that relates electromagnetic wavelength to photon energy.

Experimental observation

[edit]

Unambiguous detection of individual gravitons, though not prohibited by any fundamental law, has been thought to be impossible with any physically reasonable detector.[16] The reason is the extremely low cross section for the interaction of gravitons with matter. For example, a detector with the mass of Jupiter and 100% efficiency, placed in close orbit around a neutron star, would only be expected to observe one graviton every 10 years, even under the most favorable conditions. It would be impossible to discriminate these events from the background of neutrinos, since the dimensions of the required neutrino shield would ensure collapse into a black hole.[16] It has been proposed that detecting single gravitons would be possible by quantum sensing.[17] Even quantum events may not indicate quantization of gravitational radiation.[18]

LIGO and Virgo collaborations' observations have directly detected gravitational waves.[19][20][21] Others have postulated that graviton scattering yields gravitational waves as particle interactions yield coherent states.[22] Although these experiments cannot detect individual gravitons, they might provide information about certain properties of the graviton.[23] For example, if gravitational waves were observed to propagate slower than c (the speed of light in vacuum), that would imply that the graviton has mass (however, gravitational waves must propagate slower than c in a region with non-zero mass density if they are to be detectable).[24] Observations of gravitational waves put an upper bound of 1.76×10?23 eV/c2 on the graviton's mass.[25] Solar system planetary trajectory measurements by space missions such as Cassini and MESSENGER give a comparable upper bound of 3.16×10?23 eV/c2.[26] The gravitational wave and planetary ephemeris need not agree: they test different aspects of a potential graviton-based theory.[27]:?71?

Astronomical observations of the kinematics of galaxies, especially the galaxy rotation problem and modified Newtonian dynamics, might point toward gravitons having non-zero mass.[28][29]

Difficulties and outstanding issues

[edit]

Most theories containing gravitons suffer from severe problems. Attempts to extend the Standard Model or other quantum field theories by adding gravitons run into serious theoretical difficulties at energies close to or above the Planck scale. This is because of infinities arising due to quantum effects; technically, gravitation is not renormalizable. Since classical general relativity and quantum mechanics seem to be incompatible at such energies, from a theoretical point of view, this situation is not tenable. One possible solution is to replace particles with strings. String theories are quantum theories of gravity in the sense that they reduce to classical general relativity plus field theory at low energies, but are fully quantum mechanical, contain a graviton, and are thought to be mathematically consistent.[30]

See also

[edit]

References

[edit]
  1. ^ G is used to avoid confusion with gluons (symbol g)
  2. ^ Rovelli, C. (2001). "Notes for a brief history of quantum gravity". arXiv:gr-qc/0006061.
  3. ^ a b Blokhintsev, D. I.; Gal'perin, F. M. (1934). "Гипотеза нейтрино и закон сохранения энергии" [Neutrino hypothesis and conservation of energy]. Pod Znamenem Marxisma (in Russian). 6: 147–157. ISBN 978-5-04-008956-7. {{cite journal}}: ISBN / Date incompatibility (help)
  4. ^ Zyla, P.; et al. (Particle Data Group) (2020). "Review of Particle Physics: Gauge and Higgs bosons" (PDF). Progress of Theoretical and Experimental Physics. Archived (PDF) from the original on 2025-08-05.
  5. ^ For a comparison of the geometric derivation and the (non-geometric) spin-2 field derivation of general relativity, refer to box 18.1 (and also 17.2.5) of Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973). Gravitation. W. H. Freeman. ISBN 0-7167-0344-0.
  6. ^ Feynman, R. P.; Morinigo, F. B.; Wagner, W. G.; Hatfield, B. (1995). Feynman Lectures on Gravitation. Addison-Wesley. ISBN 0-201-62734-5.
  7. ^ Zee, Anthony (2003). Quantum Field Theory in a Nutshell. Princeton, New Jersey: Princeton University Press. ISBN 0-691-01019-6.
  8. ^ Randall, L. (2005). Warped Passages: Unraveling the Universe's Hidden Dimensions. Ecco Press. ISBN 0-06-053108-8.
  9. ^ a b Stachel, John (1999). "The Early History of Quantum Gravity (1916–1940)". Black Holes, Gravitational Radiation and the Universe. Fundamental Theories of Physics. Vol. 100. pp. 525–534. doi:10.1007/978-94-017-0934-7_31. ISBN 978-90-481-5121-9.
  10. ^ Farmelo, Graham (2009). The Strangest Man : The Hidden Life of Paul Dirac, Quantum Genius. Faber and Faber. pp. 367–368. ISBN 978-0-571-22278-0.
  11. ^ Debnath, Lokenath (2013). "A short biography of Paul A. M. Dirac and historical development of Dirac delta function". International Journal of Mathematical Education in Science and Technology. 44 (8): 1201–1223. Bibcode:2013IJMES..44.1201D. doi:10.1080/0020739X.2013.770091. ISSN 0020-739X.
  12. ^ Zee, Anthony (2025-08-05). On Gravity: A Brief Tour of a Weighty Subject. Princeton, New Jersey: Princeton University Press. ISBN 978-0-691-17438-9.
  13. ^ Bern, Zvi; Chi, Huan-Hang; Dixon, Lance; Edison, Alex (2025-08-05). "Two-loop renormalization of quantum gravity simplified" (PDF). Physical Review D. 95 (4): 046013. arXiv:1701.02422. Bibcode:2017PhRvD..95d6013B. doi:10.1103/PhysRevD.95.046013. ISSN 2470-0010.
  14. ^ O’Keefe, Madeleine (2025-08-05). "Massless particles can't be stopped | symmetry magazine". www.symmetrymagazine.org. Retrieved 2025-08-05.
  15. ^ Abbott, B. P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (1 June 2017). "GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2". Physical Review Letters. 118 (22): 221101. arXiv:1706.01812. Bibcode:2017PhRvL.118v1101A. doi:10.1103/PhysRevLett.118.221101. PMID 28621973. S2CID 206291714.
  16. ^ a b Rothman, T.; Boughn, S. (2006). "Can Gravitons be Detected?". Foundations of Physics. 36 (12): 1801–1825. arXiv:gr-qc/0601043. Bibcode:2006FoPh...36.1801R. doi:10.1007/s10701-006-9081-9. S2CID 14008778.
  17. ^ Tobar, Germain; et al. (22 August 2024). "Detecting single gravitons with quantum sensing". Nat Commun. 15 (1): 7229. arXiv:2308.15440. Bibcode:2024NatCo..15.7229T. doi:10.1038/s41467-024-51420-8. PMC 11341900. PMID 39174544.
  18. ^ Carney, Daniel; Domcke, Valerie; Rodd, Nicholas L. (2025-08-05). "Graviton detection and the quantization of gravity". Physical Review D. 109 (4): 044009. arXiv:2308.12988. Bibcode:2024PhRvD.109d4009C. doi:10.1103/PhysRevD.109.044009.
  19. ^ Abbott, B. P.; et al. (2025-08-05). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6). LIGO Scientific Collaboration and Virgo Collaboration: 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. ISSN 0031-9007. PMID 26918975. S2CID 124959784.
  20. ^ Castelvecchi, Davide; Witze, Witze (February 11, 2016). "Einstein's gravitational waves found at last". Nature News. doi:10.1038/nature.2016.19361. S2CID 182916902.
  21. ^ "Gravitational waves detected 100 years after Einstein's prediction". NSF – National Science Foundation. Retrieved 2025-08-05.
  22. ^ Senatore, L.; Silverstein, E.; Zaldarriaga, M. (2014). "New sources of gravitational waves during inflation". Journal of Cosmology and Astroparticle Physics. 2014 (8): 016. arXiv:1109.0542. Bibcode:2014JCAP...08..016S. doi:10.1088/1475-7516/2014/08/016. S2CID 118619414.
  23. ^ Dyson, Freeman (8 October 2013). "Is a Graviton Detectable?". International Journal of Modern Physics A. 28 (25): 1330041–1–1330035–14. Bibcode:2013IJMPA..2830041D. doi:10.1142/S0217751X1330041X.
  24. ^ Will, C. M. (1998). "Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries" (PDF). Physical Review D. 57 (4): 2061–2068. arXiv:gr-qc/9709011. Bibcode:1998PhRvD..57.2061W. doi:10.1103/PhysRevD.57.2061. S2CID 41690760. Archived (PDF) from the original on 2025-08-05.
  25. ^ R Abbot; et al. (15 June 2021). "Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog". Physical Review Letters. 103 (12): 122022. arXiv:2010.14529. Bibcode:2021PhRvD.103l2002A. doi:10.1103/PhysRevD.103.122002.
  26. ^ L. Bernus; et al. (15 July 2020). "Constraint on the Yukawa suppression of the Newtonian potential from the planetary ephemeris INPOP19a". Physical Review Letters. 102 (2): 021501(R). arXiv:2006.12304. Bibcode:2020PhRvD.102b1501B. doi:10.1103/PhysRevD.102.021501.
  27. ^ Fienga, Agnès; Minazzoli, Olivier (2025-08-05). "Testing theories of gravity with planetary ephemerides". Living Reviews in Relativity. 27 (1): 1. arXiv:2303.01821. Bibcode:2024LRR....27....1F. doi:10.1007/s41114-023-00047-0. ISSN 1433-8351.
  28. ^ Trippe, Sascha (2012). "A Simplified Treatment of Gravitational Interaction on Galactic Scales". Journal of the Korean Astronomical Society. 46 (1): 41–47. arXiv:1211.4692. Bibcode:2013JKAS...46...41T. doi:10.5303/JKAS.2013.46.1.41.
  29. ^ Platscher, Moritz; Smirnov, Juri; Meyer, Sven; Bartelmann, Matthias (2018). "Long range effects in gravity theories with Vainshtein screening". Journal of Cosmology and Astroparticle Physics. 2018 (12): 009. arXiv:1809.05318. Bibcode:2018JCAP...12..009P. doi:10.1088/1475-7516/2018/12/009. S2CID 86859475.
  30. ^ Sokal, A. (July 22, 1996). "Don't Pull the String Yet on Superstring Theory". The New York Times. Retrieved March 26, 2010.
[edit]
爱吃甜食是缺乏什么 脑卒中什么意思 人乳头瘤病毒51型阳性是什么意思 吃什么药不能献血 肾结石吃什么食物好
五彩缤纷是什么意思 9月14号什么星座 柠檬水喝多了有什么坏处 胆汁酸高是什么原因 椰子水有什么好处
血友病是什么意思 淋巴结是什么病 胸骨疼挂什么科 沃尔玛是干什么的 金字旁目字读什么
渠道医院是什么意思 女人喝什么茶对身体好 萧字五行属什么 怀孕一个月有点见红是什么情况 汲水什么意思
世界上最大的湖泊是什么湖hcv9jop6ns5r.cn 属龙五行属什么hcv7jop7ns2r.cn 什么的秋天hcv7jop5ns5r.cn 南瓜和窝瓜有什么区别hcv7jop9ns9r.cn 秘语是什么意思hcv8jop2ns0r.cn
1988属什么hcv7jop5ns1r.cn vintage是什么牌子hcv8jop6ns1r.cn 癫痫病是什么原因引起的hcv9jop5ns3r.cn 四月初八是什么节日xianpinbao.com 生辰纲是什么东西kuyehao.com
狐臭应该挂什么科hcv7jop7ns0r.cn 腺样体是什么意思hcv9jop2ns9r.cn 炎热的夏天风儿像什么hcv9jop6ns0r.cn 胃疼喝什么能缓解疼痛hcv8jop2ns6r.cn 豆腐有什么营养hcv8jop4ns0r.cn
属马女和什么属相最配0297y7.com 云南小黄姜有什么功效hcv8jop5ns1r.cn 金鱼藻是什么植物hcv8jop8ns8r.cn 五行代表什么dajiketang.com 果可以加什么偏旁hcv9jop5ns1r.cn
百度