直肠给药对小孩身体有什么影响| 醋泡什么壮阳最快| 口唇发绀是什么意思| 小便解不出来是什么原因| 什么叫积阴德| 指甲开裂是什么原因| 好马不吃回头草什么意思| 输钾为什么会痛| 金刚是什么树的种子| 初心是什么意思| 什么手表品牌最好| 尿道下裂是什么意思| 小儿风寒感冒吃什么药| 脱式计算是什么意思| 血钙是什么意思| 金刚藤有什么功效| 腰酸背痛挂什么科| 胸闷气短是什么原因| 做梦梦见掉牙齿是什么意思| 压马路是什么意思| 什么叫智慧| 窦性心律不齐是什么意思| 梁字五行属什么| 什么叫靶向药| 孕32周需要做什么检查| 咳嗽吃什么好得快| 受虐倾向是什么意思| 精液少是什么原因| 逐年是什么意思| 安宫牛黄丸为什么那么贵| 1953属什么生肖| 什么水果寒凉性| 篓子是什么意思| 支原体感染吃什么食物好| 缺钙吃什么补钙最快| 巨蟹座前面是什么星座| 发烧腿疼是什么原因| 口腔溃疡要吃什么药| 馀事勿取什么意思| 法国货币叫什么| 地藏菩萨为什么不能拜| 度化是什么意思| 早上7点是什么时辰| 抗核抗体是检查什么的| 休学需要什么条件| 巨蟹男和什么座最配对| cfa是什么证书| 尿ph值高是什么意思| 阎维文什么军衔| 晚上20点是什么时辰| 慢性咽炎用什么药| 拔罐拔出水泡是什么原因| 相害是什么意思| 7月1号什么节| fleece是什么面料| 陈皮为什么越陈越好| 经警是做什么的| 影像科是做什么的| 农历4月是什么月| 枫叶是什么树| 法国用什么货币| 阳光像什么| 江小白是什么酒| 十二月七号是什么星座| 肺结核吃什么好| 黄发指什么| 什么的城市| 什么不能带上高铁| au是什么意思| 嗓子疼是什么原因引起的| 能量守恒是什么意思| 长宽高用什么字母表示| 久而久之下一句是什么| 月光族是什么意思啊| cos是什么意思啊| 投射效应是什么意思| 宜祭祀是什么意思| 什么是拘役| 情种是什么意思| 晚五行属什么| 梦见自己光脚走路是什么意思| 8月是什么月| 左什么右什么| 帝旺是什么意思| 国民老公是什么意思| 湛蓝是什么颜色| 妈富隆是什么药| 王八和乌龟有什么区别| 艾滋有什么症状| 风湿性心脏病吃什么药| 非布司他片是什么药| 酒蒙子什么意思| 孕妇喉咙痛吃什么好得最快| 隔离霜是干什么用的| 风光秀丽的什么| 普陀山求什么最灵验| 人过留名雁过留声什么意思| 郑州有什么特产| 女人左眼下有痣代表什么| 知柏地黄丸有什么功效| 腰肌劳损挂什么科| 羊内腰和外腰分别是什么| 蝎子的天敌是什么| 乇是什么意思| 8023什么意思| 玄机是什么意思| 九月三号是什么星座| 爱放屁什么原因| 石钟乳是什么意思| 年轻人能为世界做什么| 能力很强的动物是什么| 尿酸为什么会高| obsidian什么意思| 头皮一阵一阵发麻是什么原因| 包干是什么意思| 霸道是什么车| 眼皮跳是什么原因引起的| 低热吃什么药| 晚霞是什么| 黄体是什么意思| 胃痛吃什么好得快| 尿常规查什么| 白带多是什么情况| 苯甲酸钠是什么东西| 益生元是什么东西| 中筛是检查什么项目| 西红柿和什么榨汁减肥| 教师节该送什么礼物| 什么是银屑病| 双花红棍什么意思| 梦见下暴雨是什么意思| 什么是癌胚抗原| 生完孩子可以吃什么水果| 为什么大便不成形| 袋鼠吃什么| 色丁布是什么面料| 宫内积液什么意思| 尿酸高不能吃什么食物| 猫砂是什么材料做的| 上午右眼皮跳什么预兆| 社会科学院是干什么的| 熟普属于什么茶| 血糖高适合吃什么食物| 96年是什么年| 猫咪能吃什么水果| 舌头什么颜色正常| 走私是什么| roi是什么| 金舆是什么意思| 下身有点刺痛什么原因| 什么螺不能吃| 萎缩性胃炎是什么原因引起的| 晚上睡不着觉是什么原因| 人为什么会生病| 火麻是什么植物| 在什么的前面用英语怎么说| 今天是什么日子| 观音菩萨叫什么名字| 起床口苦是什么原因| 姌是什么意思| 7月4是什么星座| 头晕是什么感觉| 肝功能不全是什么意思| 打摆子是什么病| 鲁迅是什么家| 为什么一直打哈欠| 柠檬有什么功效| 韩红是什么军衔| 月经粉红色是什么原因| 10月21号是什么星座| 人为什么要有性生活| 对什么什么感兴趣| 君臣佐使是什么意思| 什么气什么现| 书到用时方恨少下一句是什么| 什么是激光| 升白针是什么药| 你有一双会说话的眼睛是什么歌| ccu病房什么意思| 1020是什么星座| 喝老陈皮水有什么好处| 初秋的天冰冷的夜是什么歌| 宠物兔吃什么| 薄荷绿是什么颜色| 咬到舌头是什么预兆| 阴险表情什么意思| 菌群异常是什么意思| tim是什么| 贪吃的动物是什么生肖| 火可念什么| 手串18颗代表什么意思| 海带什么人不能吃| gdp是什么意思| 黄花菜都凉了什么意思| 膝关节疼痛挂什么科| 汉语拼音是什么时候发明的| 维生素b补什么的| 猪和什么属相不合| 5月12号是什么日子| 金黄的什么| 缓缓是什么意思| 什么主食含糖量低| 胃食管反流吃什么中成药| exo是什么意思| 今年21岁属什么生肖| 什么病会引起牙疼| 大力出奇迹什么意思| power是什么牌子| 增加免疫力吃什么| 肌酐高说明什么| 牛头不对马嘴是什么意思| 宋美龄为什么没有孩子| 三千大千世界什么意思| 可望不可求是什么意思| 咽喉肿痛吃什么药| 食神生财是什么意思| 汗水里面有什么成分| 儿童个子矮小看什么科| 娃娃脸是什么意思| 备货是什么意思| 左心室高电压什么意思| 清炖牛肉放什么调料| 舌加氏念什么| 11点多是什么时辰| 什么人不适合普拉提| 性激素六项什么时候查最准确| 清洁度三度什么意思| 唐筛和无创有什么区别| 耳朵前面有痣代表什么| 4月6号什么星座| 天麻什么味道| 缺铁性贫血严重会导致什么后果| 月经周期是什么意思| 钛色是什么颜色| 周杰伦什么时候出道| 梦见小白兔是什么意思| 失眠吃什么| 庄子姓什么| 女人性冷淡吃什么药效果好| 尿毒症能吃什么水果| 田野是什么意思| 重字五行属什么| 雨露均沾什么意思| 羽丝绒是什么材料| 低烧是什么病的前兆| 梦见蛇咬别人是什么意思| 什么人不能吃猪肝| 籍贯填什么| 白芽奇兰是什么茶| 亚蒂息肉是什么意思| 注音是什么意思| 贵圈是什么意思| 命里缺什么怎么看| 2000年是属什么生肖| 心静自然凉是什么意思| 肋间神经痛吃什么药| 狻猊是什么| 硬水是什么意思| 体育生能报什么专业| 什么牛不吃草| 棕榈油是什么油| 动漫ova是什么意思| 属相是什么意思| 什么东西补钾| 百度Jump to content

“党员责任岗”APP:打通服务群众“最后一公里”

From Wikipedia, the free encyclopedia
(Redirected from Gauss' law for gravity)
百度 前日,在山东庙街道铝镁社区二楼的活动室里,朱景芳跟着孙纯月艺术团排练一遍舞蹈,跳着轻快的舞步,脸上带着笑容,我就是长得老点,我今年45岁。

In physics, Gauss's law for gravity, also known as Gauss's flux theorem for gravity, is a law of physics that is equivalent to Newton's law of universal gravitation. It is named after Carl Friedrich Gauss. It states that the flux (surface integral) of the gravitational field over any closed surface is proportional to the mass enclosed. Gauss's law for gravity is often more convenient to work from than Newton's law.[1]

The form of Gauss's law for gravity is mathematically similar to Gauss's law for electrostatics, one of Maxwell's equations. Gauss's law for gravity has the same mathematical relation to Newton's law that Gauss's law for electrostatics bears to Coulomb's law. This is because both Newton's law and Coulomb's law describe inverse-square interaction in a 3-dimensional space.

Qualitative statement of the law

[edit]

The gravitational field g (also called gravitational acceleration) is a vector field – a vector at each point of space (and time). It is defined so that the gravitational force experienced by a particle is equal to the mass of the particle multiplied by the gravitational field at that point.

Gravitational flux is a surface integral of the gravitational field over a closed surface, analogous to how magnetic flux is a surface integral of the magnetic field.

Gauss's law for gravity states:

The gravitational flux through any closed surface is proportional to the enclosed mass.

Integral form

[edit]

The integral form of Gauss's law for gravity states:

\oiint

where

  • \oiint (also written ) denotes a surface integral over a closed surface,
  • ?V is any closed surface (the boundary of an arbitrary volume V),
  • dA is a vector, whose magnitude is the area of an infinitesimal piece of the surface ?V, and whose direction is the outward-pointing surface normal (see surface integral for more details),
  • g is the gravitational field,
  • G is the universal gravitational constant, and
  • M is the total mass enclosed within the surface ?V.

The left-hand side of this equation is called the flux of the gravitational field. Note that according to the law it is always negative (or zero), and never positive. This can be contrasted with Gauss's law for electricity, where the flux can be either positive or negative. The difference is because charge can be either positive or negative, while mass can only be positive.

Differential form

[edit]

The differential form of Gauss's law for gravity states

where denotes divergence, G is the universal gravitational constant, and ρ is the mass density at each point.

Relation to the integral form

[edit]

The two forms of Gauss's law for gravity are mathematically equivalent. The divergence theorem states: where V is a closed region bounded by a simple closed oriented surface ?V and dV is an infinitesimal piece of the volume V (see volume integral for more details). The gravitational field g must be a continuously differentiable vector field defined on a neighborhood of V.

Given also that we can apply the divergence theorem to the integral form of Gauss's law for gravity, which becomes: which can be rewritten: This has to hold simultaneously for every possible volume V; the only way this can happen is if the integrands are equal. Hence we arrive at which is the differential form of Gauss's law for gravity.

It is possible to derive the integral form from the differential form using the reverse of this method.

Although the two forms are equivalent, one or the other might be more convenient to use in a particular computation.

Relation to Newton's law

[edit]

Deriving Gauss's law from Newton's law

[edit]

Gauss's law for gravity can be derived from Newton's law of universal gravitation, which states that the gravitational field due to a point mass is: where

  • er is the radial unit vector,
  • r is the radius, |r|.
  • M is the mass of the particle, which is assumed to be a point mass located at the origin.

A proof using vector calculus is shown in the box below. It is mathematically identical to the proof of Gauss's law (in electrostatics) starting from Coulomb's law.[2]

Outline of proof

g(r), the gravitational field at r, can be calculated by adding up the contribution to g(r) due to every bit of mass in the universe (see superposition principle). To do this, we integrate over every point s in space, adding up the contribution to g(r) associated with the mass (if any) at s, where this contribution is calculated by Newton's law. The result is: (d3s stands for dsxdsydsz, each of which is integrated from ?∞ to +∞.) If we take the divergence of both sides of this equation with respect to r, and use the known theorem[2] where δ(r) is the Dirac delta function, the result is Using the "sifting property" of the Dirac delta function, we arrive at which is the differential form of Gauss's law for gravity, as desired.

Deriving Newton's law from Gauss's law and irrotationality

[edit]

It is impossible to mathematically prove Newton's law from Gauss's law alone, because Gauss's law specifies the divergence of g but does not contain any information regarding the curl of g (see Helmholtz decomposition). In addition to Gauss's law, the assumption is used that g is irrotational (has zero curl), as gravity is a conservative force:

Even these are not enough: Boundary conditions on g are also necessary to prove Newton's law, such as the assumption that the field is zero infinitely far from a mass.

The proof of Newton's law from these assumptions is as follows:

Outline of proof

Start with the integral form of Gauss's law: Apply this law to the situation where the volume V is a sphere of radius r centered on a point-mass M. It's reasonable to expect the gravitational field from a point mass to be spherically symmetric. (We omit the proof for simplicity.) By making this assumption, g takes the following form: (i.e., the direction of g is antiparallel to the direction of r, and the magnitude of g depends only on the magnitude, not direction, of r). Plugging this in, and using the fact that ?V is a spherical surface with constant r and area ,

which is Newton's law.

Poisson's equation and gravitational potential

[edit]

Since the gravitational field has zero curl (equivalently, gravity is a conservative force) as mentioned above, it can be written as the gradient of a scalar potential, called the gravitational potential: Then the differential form of Gauss's law for gravity becomes Poisson's equation: This provides an alternate means of calculating the gravitational potential and gravitational field. Although computing g via Poisson's equation is mathematically equivalent to computing g directly from Gauss's law, one or the other approach may be an easier computation in a given situation.

In radially symmetric systems, the gravitational potential is a function of only one variable (namely, ), and Poisson's equation becomes (see Del in cylindrical and spherical coordinates): while the gravitational field is:

When solving the equation it should be taken into account that in the case of finite densities ??/?r has to be continuous at boundaries (discontinuities of the density), and zero for r = 0.

Applications

[edit]

Gauss's law can be used to easily derive the gravitational field in certain cases where a direct application of Newton's law would be more difficult (but not impossible). See the article Gaussian surface for more details on how these derivations are done. Three such applications are as follows:

Bouguer plate

[edit]

We can conclude (by using a "Gaussian pillbox") that for an infinite, flat plate (Bouguer plate) of any finite thickness, the gravitational field outside the plate is perpendicular to the plate, towards it, with magnitude 2πG times the mass per unit area, independent of the distance to the plate[3] (see also gravity anomalies).

More generally, for a mass distribution with the density depending on one Cartesian coordinate z only, gravity for any z is 2πG times the difference in mass per unit area on either side of this z value.

In particular, a parallel combination of two parallel infinite plates of equal mass per unit area produces no gravitational field between them.

Cylindrically symmetric mass distribution

[edit]

In the case of an infinite uniform (in z) cylindrically symmetric mass distribution we can conclude (by using a cylindrical Gaussian surface) that the field strength at a distance r from the center is inward with a magnitude of 2G/r times the total mass per unit length at a smaller distance (from the axis), regardless of any masses at a larger distance.

For example, inside an infinite uniform hollow cylinder, the field is zero.

Spherically symmetric mass distribution

[edit]

In the case of a spherically symmetric mass distribution we can conclude (by using a spherical Gaussian surface) that the field strength at a distance r from the center is inward with a magnitude of G/r2 times only the total mass within a smaller distance than r. All the mass at a greater distance than r from the center has no resultant effect.

For example, a hollow sphere does not produce any net gravity inside. The gravitational field inside is the same as if the hollow sphere were not there (i.e. the resultant field is that of all masses not including the sphere, which can be inside and outside the sphere).

Although this follows in one or two lines of algebra from Gauss's law for gravity, it took Isaac Newton several pages of cumbersome calculus to derive it directly using his law of gravity; see the article shell theorem for this direct derivation.

Derivation from Lagrangian

[edit]

The Lagrangian density for Newtonian gravity is Applying Hamilton's principle to this Lagrangian, the result is Gauss's law for gravity: See Lagrangian (field theory) for details.

See also

[edit]

References

[edit]
  1. ^ "Gauss's law and gravity".
  2. ^ a b See, for example, Griffiths, David J. (1998). Introduction to Electrodynamics (3rd ed.). Prentice Hall. p. 50. ISBN 0-13-805326-X.
  3. ^ The mechanics problem solver, by Fogiel, pp 535–536

Further reading

[edit]
宜入宅是什么意思 周年祭日有什么讲究 什么是化学性肝损伤 枕头底下放剪刀有什么说法 胸围98是什么罩杯
唐僧最后成了什么佛 肉馅可以做什么美食 虾与什么食物相克 什么工作好 气胸吃什么药
口腔溃疡吃什么药好使 标题是什么意思 酉时右眼跳是什么预兆 十的偏旁有什么字 脑血栓是什么原因引起的
甲亢查什么项目 血糖是什么引起的 苍鹰是什么意思 胃肠蠕动慢吃什么药 阴囊潮湿是什么原因
十一月一日是什么星座hcv8jop8ns8r.cn none是什么意思hcv9jop2ns1r.cn 通草长什么样图片bjhyzcsm.com 什么叫跨境电商hanqikai.com 红色加紫色是什么颜色fenrenren.com
四菜一汤是什么意思hcv9jop5ns3r.cn 经常眨眼睛是什么原因jiuxinfghf.com 丙氨酸氨基转移酶是查什么的hcv8jop8ns8r.cn 梦见小猫崽是什么意思weuuu.com 头伏吃什么hcv9jop8ns1r.cn
围产期是什么意思hcv8jop0ns9r.cn 八百里加急是什么意思hcv9jop2ns4r.cn 树菠萝什么时候成熟hcv8jop7ns7r.cn 肚脐眼连接体内的什么器官hcv8jop4ns7r.cn 营养素是什么hcv8jop5ns3r.cn
dl是什么hcv7jop4ns8r.cn 夜宵吃什么好hcv8jop5ns1r.cn 孕妇梦见很多蛇是什么意思jiuxinfghf.com 羸弱是什么意思hcv7jop6ns6r.cn 湿浊中阻是什么意思hcv8jop1ns6r.cn
百度