心脏房颤是什么意思| 肾囊肿挂什么科| 老炮儿是什么意思啊| 什么样的柳条| 小孩子头发黄是什么原因| 实蛋是什么| 什么食物含钙高| 乌龙茶适合什么季节喝| 官方翻新机是什么意思| 厉兵秣马是什么意思| 眼睛突然红了是什么原因| ohs是什么意思| 歹人是什么意思| 心有灵犀是什么意思| 红萝卜和胡萝卜有什么区别| 孕妇喝柠檬水对胎儿有什么好处| 二米饭是什么| 副处级干部是什么级别| 吃什么最养胃| 地铁不能带什么东西| 脑梗用什么药| 怀孕吃什么好| 梦见月经血是什么预兆| 冷泡茶用什么茶叶| 脾虚胃热吃什么中成药| 有什么办法让男人死精| ia是什么意思| 白酒泡什么补肾壮阳最好| 组织液是什么| 脑血管造影是什么意思| 酸菜鱼是什么地方的菜| 什么是情绪| 大姨妈来了喝什么好| 贵人相助是什么意思| 血热吃什么好| 痛风反复发作什么原因| 牙周炎吃什么消炎药| 消肿用什么药| 什么叫尊重| 扁桃体肥大吃什么药好得快| 2月18号是什么星座| 三月份是什么季节| 中年人手抖是什么原因| 雁过拔毛是什么意思| 什么样的小河| 消化道出血吃什么药| 镜检白细胞是什么意思| 尿蛋白十一是什么意思| 椒盐是什么调料| 今天穿什么衣服合适| 睾丸扭转有什么症状| 窒息什么意思| 低级别上皮内瘤变是什么意思| 东盟是什么意思| 牙疼吃什么止疼药| 女性尿血是什么原因引起的| 万象更新是什么意思| 流虚汗是什么原因| 疖肿是什么| ch发什么音| ig是什么意思| 可惜是什么意思| 表是什么意思| 痛风可以喝什么酒| 一花一世界下一句是什么| 乌鸡白凤丸男性吃治疗什么| 太阳穴疼痛是什么原因| 糖尿病吃什么菜最好| 备孕要注意些什么| 烧仙草是什么做的| 心血管病人吃什么最好| 男的结扎有什么影响| 嘴唇紫红色是什么原因| choker什么意思| kv是什么单位| 淋巴结钙化是什么意思| 肛塞有什么用| 肺部积液吃什么药| 色即是空是什么意思| 鸵鸟心态什么意思| 三七长什么样子图片| 额头冒痘是什么原因| 为什么女人阴唇会变大| 考妣是什么意思| 西瓜和什么榨汁好喝| 天鹅吃什么| 牙龈出血缺什么| 碳酸氢钠是什么东西| 女人左下腹部疼痛什么原因| 为什么三文鱼可以生吃| 五行属木缺什么| 耳朵轮廓痒是什么原因| 手脚脱皮是什么原因| 银耳为什么助湿气| 蚊子代表什么生肖| 发烧输液输的是什么药| 理财什么意思| hpv吃什么提高免疫力| 什么一现| 属龙本命佛是什么佛| 什么是肺纤维化| 澄面是什么面粉| 纯钛是什么材质| 两个a型血的人生的孩子什么血型| 中之人什么意思| 肺纤维增殖灶是什么意思| 中国什么时候灭亡| 小麦和大麦有什么区别| 言字旁与什么有关| 一岁半宝宝反复发烧是什么原因| d代表什么| 孕妇感冒可以吃什么感冒药| 儿童铅超标有什么症状| 均可是什么意思| 煮中药用什么锅| 是什么符号| jeep是什么意思| 功能性子宫出血是什么原因造成的| 小儿消化不良吃什么药最好| 什么情况下要割包皮| 不撞南墙不回头是什么意思| 门静脉增宽是什么意思| 世界上最小的国家是什么| he是什么气体| 骤雨落宿命敲什么意思| 生日礼物送什么| 左后脑勺疼是什么原因| 癫痫病是什么症状| cnc男装是什么档次| 呼吸不过来要喘大气是什么情况| 七上八下是什么生肖| 墨西哥人是什么人种| 慢心律又叫什么药| ki是什么意思| 什么是情感| 降血脂喝什么茶最好| 接骨木是什么| 胃病烧心吃什么药好| 肾虚什么意思| 部分是什么意思| 蜜蜡五行属什么| 逍遥丸主要治什么病| 精神内科一般检查什么| 龙须菜是什么| 吃什么解毒| 甘油三酯高吃什么药效果好| 口渴是什么原因| 希思黎属于什么档次| 什么菜补血| 肚脐中间疼是什么原因| 冬天吃什么| 湿疹挂什么科| 西瓜跟什么不能一起吃| 家里为什么有小飞虫| 为什么指甲有竖纹| ckd5期是什么意思| 佩字五行属什么| 瑶浴是什么意思| 告人诈骗需要什么证据| 农历5月17日是什么星座| 便秘吃什么药最好最快| 秋天都有什么| 什么是骨质增生| 胖头鱼又叫什么鱼| 兹禧属什么生肖| 智障是什么意思| 午时属什么生肖| 二聚体测定是什么| 尧五行属什么| 乳糖不耐受吃什么奶粉| 什么让生活更美好作文| 年轮是什么意思| 苹可以组什么词| 双鱼女和什么座最配对| 双头蛇是什么意思| 小暑节气吃什么| 女人腿肿应该检查什么| 禄存是什么意思| 困惑什么意思| 流鼻涕咳嗽吃什么药| 查肝胆胰脾肾挂什么科| 晚上睡觉小腿抽筋是什么原因| 棱长是什么| 为什么会得肠梗阻| balco是什么牌子手表| 夏天怕热冬天怕冷是什么体质| 吃完螃蟹不能吃什么| 骨折吃什么水果好| 什么是三有保护动物| 水浒传什么朝代| 飞亚达手表什么档次| 舌苔发黑是什么原因| 肺气肿吃什么药| 低压高吃点什么药| 贤侄是什么意思| 男人吃什么补身体| 屏保是什么| 犬瘟热是什么症状| vsd是什么意思| 养肝护肝吃什么药| 看对眼是什么意思| 葡萄糖输液有什么作用| 早上起床眼睛浮肿是什么原因| 枷锁是什么意思| 山东人喜欢吃什么| 什么叫支原体阳性| 药流有什么危害| 蛋白尿是什么| 胃寒吃什么药最有效| 元五行属性是什么| 生物工程专业学什么| 窦性早搏是什么意思| 尿很臭是什么原因女性| 肝胆相照是什么意思| 脾大是什么病| 雄字五行属什么| prn医学上是什么意思| 脚干裂用什么药膏| 健身吃什么水果| 负荷是什么意思| 白细胞wbc偏高是什么意思| 北京为什么这么热| 新生儿什么时候上户口| 唯我独尊指什么生肖| 中指戴戒指什么意思| 事半功倍什么意思| 减肥吃什么好| 豆沫是什么做的| 丹参有什么作用| 心理疾病吃什么药| 双减是什么意思| 仔仔是什么意思| 0a是什么意思| 什么水果好吃| e-mail什么意思| 和女生聊天聊什么| 女人三十如狼四十如虎什么意思| 切诺是什么药| bull是什么意思| 口干舌燥是什么意思| 阴虚火旺吃什么食物好| 黑猫警长叫什么名字| 吃什么补黑色素最快| 有什么好吃的家常菜| 儿童说话不清楚挂什么科| 甲状腺功能亢进吃什么药| 嘴下面起痘是什么原因| 分销是什么意思| 桫椤是什么植物| 腰扭伤挂什么科| 入户口需要什么资料| 肩膀痛是什么原因| 火象是什么星座| 猫最喜欢吃什么| pdd是什么| 军魂是什么意思| 81年属什么的| 小什么名字好听| 阳历6月28日是什么星座| 梦见搬家是什么意思| 低压高有什么症状| 清火喝什么茶| 骨转移是什么意思| i是什么| 百度Jump to content

别只关注《速8》票房,来聊聊汽车电影与广告植入

From Wikipedia, the free encyclopedia
Foucault's pendulum in the Panthéon, Paris
百度 比如说有的人,行为不轨,道德不好。

The Foucault pendulum or Foucault's pendulum is a simple device named after French physicist Léon Foucault, conceived as an experiment to demonstrate the Earth's rotation. If a long and heavy pendulum suspended from the high roof above a circular area is monitored over an extended period of time, its plane of oscillation appears to change spontaneously as the Earth makes its 24-hourly rotation. This effect is greatest at the poles and diminishes with lower latitude until it no longer exists at Earth's equator.

The pendulum was introduced in 1851 and was the first experiment to give simple, direct evidence of the Earth's rotation. Foucault followed up in 1852 with a gyroscope experiment to further demonstrate the Earth's rotation. Foucault pendulums today are popular displays in science museums and universities.[1]

History

[edit]
A print of the Foucault Pendulum, 1895
Foucault Pendulum at COSI Columbus knocking over a ball

Foucault was inspired by observing a thin flexible rod on the axis of a lathe, which vibrated in the same plane despite the rotation of the supporting frame of the lathe.[2]

The first public exhibition of a Foucault pendulum took place in February 1851 in the Meridian of the Paris Observatory. A few weeks later, Foucault made his most famous pendulum when he suspended a 28-kilogram (62 lb) brass-coated lead bob with a 67-metre long (220 ft) wire from the dome of the Panthéon, Paris.

Because the latitude of its location was , the plane of the pendulum's swing made a full circle in approximately , rotating clockwise approximately 11.3° per hour. The proper period of the pendulum was approximately , so with each oscillation, the pendulum rotates by about . Foucault reported observing 2.3 mm of deflection on the edge of a pendulum every oscillation, which is achieved if the pendulum swing angle is 2.1°.[2]

Foucault explained his results in an 1851 paper entitled Physical demonstration of the Earth's rotational movement by means of the pendulum, published in the Comptes rendus de l'Académie des Sciences. He wrote that, at the North Pole:[3]

...an oscillatory movement of the pendulum mass follows an arc of a circle whose plane is well known, and to which the inertia of matter ensures an unchanging position in space. If these oscillations continue for a certain time, the movement of the earth, which continues to rotate from west to east, will become sensitive in contrast to the immobility of the oscillation plane whose trace on the ground will seem animated by a movement consistent with the apparent movement of the celestial sphere; and if the oscillations could be perpetuated for twenty-four hours, the trace of their plane would then execute an entire revolution around the vertical projection of the point of suspension.

The original bob used in 1851 at the Panthéon was moved in 1855 to the Conservatoire des Arts et Métiers in Paris. A second temporary installation was made for the 50th anniversary in 1902.[4]

During museum reconstruction in the 1990s, the original pendulum was temporarily displayed at the Panthéon (1995), but was later returned to the Musée des Arts et Métiers before it reopened in 2000.[5] On April 6, 2010, the cable suspending the bob in the Musée des Arts et Métiers snapped, causing irreparable damage to the pendulum bob and to the marble flooring of the museum.[6][7] The original, now damaged pendulum bob is displayed in a separate case adjacent to the current pendulum display.

An exact copy of the original pendulum has been operating under the dome of the Panthéon, Paris since 1995.[8]

Mechanism

[edit]
Animation of a Foucault pendulum on the northern hemisphere, with the Earth's rotation rate and amplitude greatly exaggerated. The green trace shows the path of the pendulum bob over the ground (a rotating reference frame), while the bob moves in the corresponding vertical planes. The actual plane of swing appears to rotate relative to the Earth: sitting astride the bob like a swing, Coriolis fictitious force disappears: observer is in a "free rotational" reference. The wire should be as long as possible—lengths of 12–30 m (40–100 ft) are common.[9]
Animated Foucault pendulum but with a trajectory on the ground which does not correspond to a bob launched without initial velocity
A Foucault pendulum at the North Pole: The pendulum swings within a single plane as the Earth rotates beneath it
The animation describes the motion of a Foucault pendulum at a latitude of 30°N. The plane of oscillation rotates by an angle of ?180° during one day, so after two days, the plane returns to its original orientation

At either the Geographic North Pole or Geographic South Pole, the plane of oscillation of a pendulum remains fixed relative to the distant masses of the universe[citation needed] while Earth rotates underneath it, taking one sidereal day to complete a rotation. So, relative to Earth, the plane of oscillation of a pendulum at the North Pole (viewed from above) undergoes a full clockwise rotation during one day; a pendulum at the South Pole rotates counterclockwise.

When a Foucault pendulum is suspended at the equator, the plane of oscillation remains fixed relative to Earth. At other latitudes, the plane of oscillation precesses relative to Earth, but more slowly than at the pole; the angular speed, ω (measured in clockwise degrees per sidereal day), is proportional to the sine of the latitude, φ:

where latitudes north and south of the equator are defined as positive and negative, respectively. A "pendulum day" is the time needed for the plane of a freely suspended Foucault pendulum to complete an apparent rotation about the local vertical. This is one sidereal day divided by the sine of the latitude.[10][11] For example, a Foucault pendulum at 30° south latitude, viewed from above by an earthbound observer, rotates counterclockwise 360° in two days.

Using enough wire length, the described circle can be wide enough that the tangential displacement along the measuring circle of between two oscillations can be visible by eye, rendering the Foucault pendulum a spectacular experiment: for example, the original Foucault pendulum in Panthéon moves circularly, with a 6-metre pendulum amplitude, by about 5 mm each period.

A Foucault pendulum requires care to set up because imprecise construction can cause additional veering which masks the terrestrial effect. Heike Kamerlingh Onnes (Nobel laureate 1913) performed precise experiments and developed a fuller theory of the Foucault pendulum for his doctoral thesis (1879). He observed the pendulum to go over from linear to elliptic oscillation in an hour. By a perturbation analysis, he showed that geometrical imperfection of the system or elasticity of the support wire may cause a beat between two horizontal modes of oscillation.[12] The initial launch of the pendulum is also critical; the traditional way to do this is to use a flame to burn through a thread which temporarily holds the bob in its starting position, thus avoiding unwanted sideways motion (see a detail of the launch at the 50th anniversary in 1902).

Notably, veering of a pendulum was observed already in 1661 by Vincenzo Viviani, a disciple of Galileo, but there is no evidence that he connected the effect with the Earth's rotation; rather, he regarded it as a nuisance in his study that should be overcome with suspending the bob on two ropes instead of one.

Air resistance damps the oscillation, so some Foucault pendulums in museums incorporate an electromagnetic or other drive to keep the bob swinging; others are restarted regularly, sometimes with a launching ceremony as an added attraction. Besides air resistance (the use of a heavy symmetrical bob is to reduce friction forces, mainly air resistance by a symmetrical and aerodynamic bob) the other main engineering problem in creating a 1-meter Foucault pendulum nowadays is said to be ensuring there is no preferred direction of swing.[13]

[edit]
The device described by Wheatstone.

Many physical systems precess in a similar manner to a Foucault pendulum. As early as 1836, the Scottish mathematician Edward Sang contrived and explained the precession of a spinning top.[14] In 1851, Charles Wheatstone[15] described an apparatus that consists of a vibrating spring that is mounted on top of a disk so that it makes a fixed angle φ with the disk. The spring is struck so that it oscillates in a plane. When the disk is turned, the plane of oscillation changes just like the one of a Foucault pendulum at latitude φ.

Similarly, consider a nonspinning, perfectly balanced bicycle wheel mounted on a disk so that its axis of rotation makes an angle φ with the disk. When the disk undergoes a full clockwise revolution, the bicycle wheel will not return to its original position, but will have undergone a net rotation of 2π sin φ.

Foucault-like precession is observed in a virtual system wherein a massless particle is constrained to remain on a rotating plane that is inclined with respect to the axis of rotation.[16]

Spin of a relativistic particle moving in a circular orbit precesses similar to the swing plane of Foucault pendulum. The relativistic velocity space in Minkowski spacetime can be treated as a sphere S3 in 4-dimensional Euclidean space with imaginary radius and imaginary timelike coordinate. Parallel transport of polarization vectors along such sphere gives rise to Thomas precession, which is analogous to the rotation of the swing plane of Foucault pendulum due to parallel transport along a sphere S2 in 3-dimensional Euclidean space.[17]

In physics, the evolution of such systems is determined by geometric phases.[18][19] Mathematically they are understood through parallel transport.

Absolute reference frame for pendulum

[edit]

The motion of a pendulum, such as the Foucault pendulum, is typically analyzed relative to an Inertial frame of reference, approximated by the "fixed stars."[20] These stars, owing to their immense distance from Earth, exhibit negligible motion relative to one another over short timescales, making them a practical benchmark for physical calculations. While fixed stars are sufficient for physical analyses, the concept of an absolute reference frame introduces philosophical and theoretical considerations.

Newtonian absolute space

  • Isaac Newton proposed the existence of "absolute space," a universal, immovable reference frame independent of any material objects. In his Principia Mathematica, Newton described absolute space as the backdrop against which true motion occurs.[21]
  • This concept was criticized by later thinkers, such as Ernst Mach, who argued that motion should only be defined relative to other masses in the universe.[21]

Cosmic microwave background (CMB)

  • The CMB, the remnant radiation from the Big Bang, provides a universal reference for cosmological observations. By measuring motion relative to the CMB, scientists can determine the velocity of celestial bodies, including Earth, relative to the universe's early state. This has led some to consider the CMB a modern analogue of an absolute reference frame.[22]

Mach's principle and distant masses

  • Ernst Mach proposed that inertia arises from the interaction of an object with the distant masses in the universe. According to this view, the pendulum's frame of reference might be defined by the distribution of all matter in the cosmos, rather than an abstract absolute space.[21]
  • The "distant masses of the universe" play a crucial role in defining the inertial frame, suggesting that the pendulum's apparent motion might be influenced by the collective gravitational effect of these masses. This perspective aligns with Mach’s principle, emphasizing the interconnectedness of local and cosmic phenomena.[21][22]
  • However, the connection between Mach's principle and Einstein's general relativity remains unresolved. Einstein initially hoped to incorporate Mach's ideas but later acknowledged difficulties in doing so.[23]

General relativity and spacetime

  • General relativity suggests that spacetime itself can serve as a reference frame. The pendulum’s motion might be understood as relative to the curvature of spacetime, which is influenced by nearby and distant masses. This view aligns with the concept of geodesics in curved spacetime.[22]
  • The Lense-Thirring effect,[24] a prediction of general relativity, implies that massive rotating objects like Earth can slightly "drag" spacetime,[25] which could affect the pendulum’s oscillation. This effect, though theoretically significant, is currently too small to measure with a Foucault pendulum.

Equation formulation for the Foucault pendulum

[edit]

To model the Foucault pendulum, we consider a pendulum of length L and mass m, oscillating with small amplitudes. In a reference frame rotating with Earth at angular velocity Ω, the Coriolis force must be included. The equations of motion in the horizontal plane (x, y) are:

where:

  • is the natural angular frequency of the pendulum,
  • is the latitude,
  • is the acceleration due to gravity.

These coupled differential equations describe the pendulum's motion, incorporating the Coriolis effect due to Earth's rotation.[26]

Precession rate calculation

[edit]

The precession rate of the pendulum’s oscillation plane depends on latitude. The angular precession rate is given by:

where is Earth's angular rotation rate (approximately radians per second).[27]

Examples of precession periods

[edit]

The time for a full rotation of the pendulum’s plane is:

Calculations for specific locations:

  • Paris, France (latitude ):
[28]
  • New York City, USA (latitude ):
[29]

These calculations show that the pendulum's precession period varies with latitude, completing a full rotation more quickly at higher latitudes.

Installations

[edit]

There are numerous Foucault pendulums at universities, science museums, and the like throughout the world. The United Nations General Assembly Building at the United Nations headquarters in New York City has one. The Oregon Convention Center pendulum is claimed to be the largest, its length approximately 27 m (89 ft),[30][31] however, there are larger ones listed in the article, such as the one in Gamow Tower at the University of Colorado of 39.3 m (129 ft). There used to be much longer pendulums, such as the 98 m (322 ft) pendulum in Saint Isaac's Cathedral, Saint Petersburg, Russia.[32][33]

The experiment has also been carried out at the South Pole, where it was assumed that the rotation of the Earth would have maximum effect.[34][35] A pendulum was installed in a six-story staircase of a new station under construction at the Amundsen-Scott South Pole Station. It had a length of 33 m (108 ft) and the bob weighed 25 kg (55 lb). The location was ideal: no moving air could disturb the pendulum. The researchers confirmed about 24 hours as the rotation period of the plane of oscillation.

See also

[edit]
  • Absolute rotation – Rotation independent of any external reference
  • Coriolis effect – Apparent force in a rotating reference frame
  • E?tv?s experiment – Physics experiment
  • Geometric phase – Phase of a cycle
  • Gyroscope – Device for measuring or maintaining the orientation and angular velocity
  • Inertial frame – Fundamental concept of classical mechanics
  • Lariat chain – Science demonstration
  • Precession – Periodic change in the direction of a rotation axis

References

[edit]
  1. ^ Oprea, John (1995). "Geometry and the Foucault Pendulum". Amer. Math. Monthly. 102 (6): 515–522. doi:10.2307/2974765. JSTOR 2974765. Archived from the original on 2025-08-04.
  2. ^ a b Sommeria, Jo?l (2025-08-04). "Foucault and the rotation of the Earth". Comptes Rendus Physique. Science in the making: The Comptes rendus de l’Académie des sciences throughout history. 18 (9): 520–525. Bibcode:2017CRPhy..18..520S. doi:10.1016/j.crhy.2017.11.003. ISSN 1631-0705.
  3. ^ Foucault, Léon (1851). Démonstration physique du mouvement de rotation de la Terre au moyen du pendule  (in French) – via Wikisource.
  4. ^ "The Pendulum of Foucault of the Panthéon. Ceremony of inauguration by M. Chaumié, minister of the state education, burnt the wire of balancing, to start the pendulum. 1902". Paris en images. Archived from the original on 2025-08-04.
  5. ^ Kissell, Joe (November 8, 2004). "Foucault's Pendulum: Low-tech proof of Earth's rotation". Interesting thing of the day. Archived from the original on March 12, 2012. Retrieved March 21, 2012.
  6. ^ Thiolay, Boris (April 28, 2010). "Le pendule de Foucault perd la boule". L'Express (in French). Archived from the original on July 10, 2010.
  7. ^ Caulcutt, Clea (13 May 2010). "Foucault's pendulum is sent crashing to Earth". Times Higher Education. Archived from the original on March 2, 2024. Retrieved August 10, 2024.
  8. ^ "Foucault's Pendulum and the Paris Pantheon". Atlas Obscura. Archived from the original on January 12, 2018. Retrieved January 12, 2018.
  9. ^ "Foucault Pendulum". Smithsonian Encyclopedia. Retrieved September 2, 2013.
  10. ^ "Pendulum day". Glossary of Meteorology. American Meteorological Society. Archived from the original on 2025-08-04.
  11. ^ Daliga, K.; Przyborski, M.; Szulwic, J. "Foucault's Pendulum. Uncomplicated Tool In The Study Of Geodesy And Cartography". library.iated.org. Archived from the original on 2025-08-04. Retrieved 2025-08-04.
  12. ^ Sommeria, Jo?l (1 November 2017). "Foucault and the rotation of the Earth". Comptes Rendus Physique. 18 (9): 520–525. Bibcode:2017CRPhy..18..520S. doi:10.1016/j.crhy.2017.11.003.
  13. ^ "A Short, Driven, Foucault Pendulum". Archived from the original on 2025-08-04.
  14. ^ "The Practical Mechanic's Journal". 1857.
  15. ^ Charles Wheatstone Wikisource: "Note relating to M. Foucault's new mechanical proof of the Rotation of the Earth", pp. 65–68.
  16. ^ Bharadhwaj, Praveen (2014). "Foucault precession manifested in a simple system". arXiv:1408.3047 [physics.pop-ph].
  17. ^ Krivoruchenko, M. I. (2009). "Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: Two faces of one coin". Phys. Usp. 52 (8): 821–829. arXiv:0805.1136. Bibcode:2009PhyU...52..821K. doi:10.3367/UFNe.0179.200908e.0873. S2CID 118449576.
  18. ^ "Geometric Phases in Physics", eds. Frank Wilczek and Alfred Shapere (World Scientific, Singapore, 1989).
  19. ^ L. Mangiarotti, G. Sardanashvily, Gauge Mechanics (World Scientific, Singapore, 1998)
  20. ^ Matthews, Michael R.; Gauld, Colin F.; Stinner, Arthur (2005). The Pendulum: Scientific, Historical, Philosophical and Educational Perspectives. Springer. ISBN 978-1-4020-3525-8.
  21. ^ a b c d Sochi, Taha. "Absolute Frame in Physics". Academia.edu. Retrieved 2025-08-04.
  22. ^ a b c Barbour, Julian B. (1989). Absolute or Relative Motion?: Volume 1, The Discovery of Dynamics: A Study from a Machian Point of View of the Discovery and the Structure of Dynamical Theories. Cambridge University Press. ISBN 978-0521324670.
  23. ^ Unknown. "Spacetime Theories: Mach's Principle and Inertia". Stanford Encyclopedia of Philosophy. Retrieved 2025-08-04. One can see why the Machian interpretation Einstein hoped he could give to the curved spacetimes of his theory fails to be plausible, by considering a few simple ‘worlds’ permitted by GTR
  24. ^ Cartmell, Matthew P.; Smith, James D. (2020). "Modelling and testing a laboratory-scale Foucault pendulum for relativistic frame-dragging measurements". Proceedings of the Royal Society A. 476 (2237): 20200680. doi:10.1098/rspa.2019.0680. PMC 7428043. Retrieved 2025-08-04.
  25. ^ Cartmell, Matthew P.; Smith, James D. (2024). "The terrestrial measurement of relativistic frame-dragging with a Foucault pendulum". Journal of Relativistic Physics. 48 (2): 123–145. Retrieved 2025-08-04.
  26. ^ "Foucault Pendulum Details". UNSW Physics. Retrieved 2025-08-04.
  27. ^ "Mathematical Derivations of the Foucault Pendulum" (PDF). IDC Online. Retrieved 2025-08-04.
  28. ^ "Foucault Pendulum Derivation". Warwick University. Retrieved 2025-08-04.
  29. ^ "Foucault Pendulum Details". UNSW Physics. Retrieved 2025-08-04.
  30. ^ "Kristin Jones - Andrew Ginzel". Retrieved 5 May 2018.
  31. ^ "LTW Automation Products". ltwautomation.net. Archived from the original on 29 April 2016. Retrieved 5 May 2018.
  32. ^ "The first Foucault pendulum in Russia, beyond the Arctic Circle". 2025-08-04. Archived from the original on 2025-08-04. Retrieved 2025-08-04.
  33. ^ Great Soviet Encyclopedia
  34. ^ Johnson, George (September 24, 2002). "Here They Are, Science's 10 Most Beautiful Experiments". The New York Times. Archived from the original on May 31, 2012. Retrieved September 20, 2012.
  35. ^ Baker, G. P. (2011). Seven Tales of the Pendulum. Oxford University Press. p. 388. ISBN 978-0-19-958951-7.

Further reading

[edit]
[edit]
ics是什么药 月亮星座是什么意思 脉涩是什么意思 支原体衣原体是什么病 六月初二是什么日子
mds医学上是什么意思 中药和中成药有什么区别 儿童喝蜂蜜水有什么好处和坏处 香薰是什么 切除子宫有什么危害
鼓风机是干什么用的 3朵玫瑰代表什么意思 喝水经常呛到是什么原因 口腔长期溃疡是什么原因引起的 尿毒症是什么原因导致的
荨麻疹可以吃什么食物 肚脐下面疼是什么原因 宫颈常大是什么意思 早上起来心慌是什么原因 左眼跳什么
adl是什么意思hcv9jop0ns8r.cn 冷艳是什么意思hcv9jop0ns4r.cn 睡觉手麻木是什么原因hcv8jop6ns5r.cn b型血的人是什么性格hcv8jop6ns0r.cn 尿蛋白是什么病hcv8jop5ns8r.cn
小孩的指甲脱落是什么原因hcv8jop6ns0r.cn 什么是thcv8jop0ns9r.cn 肩膜炎的症状是什么hcv9jop3ns6r.cn 七月九号是什么星座xinmaowt.com 李白字什么号什么hcv9jop1ns1r.cn
阴道瘙痒吃什么药hcv8jop7ns5r.cn swisse是什么药hcv8jop8ns8r.cn 2018是什么生肖hcv8jop6ns3r.cn 左肾结石的症状是什么hcv9jop4ns3r.cn 精子不液化吃什么药kuyehao.com
喝什么粥降血糖hcv9jop2ns1r.cn 桃子不能和什么食物一起吃naasee.com 堕胎是什么意思hcv9jop6ns1r.cn siv是什么意思xjhesheng.com 志心皈命礼是什么意思xinjiangjialails.com
百度