分泌多巴胺是什么意思| 小狗需要打什么疫苗| 乙肝需要检查什么项目| 屋漏偏逢连夜雨是什么意思| 二月二十是什么星座| 什么是嘌呤食物| 医生为为什么建议不吃生菜| 五光十色是什么意思| 六月飞雪是什么意思| 五十路是什么意思| 什么力气| 说一个人轴是什么意思| 阁老是什么意思| 皮肤一碰就红是什么原因| 什么是自由度| 负心汉是什么意思| 银杏叶片有什么作用| 小姑娘月经推迟不来什么原因| 潮汐车道是什么意思| 鼻子出油多是什么原因| 头疼恶心是什么症状| 吃什么补钾快| 冬虫夏草是什么| 偏光太阳镜是什么意思| champion是什么牌子| 菠菜补什么| out什么意思| 朝鲜战争的起因是什么| 冬瓜和什么不能一起吃| 性冷淡吃什么药| 腾云驾雾是什么生肖| 梦见很多坟墓是什么意思| 单硬脂酸甘油酯是什么| 胡萝卜什么时间种| 什么是品牌| 梦见苍蝇很多是什么意思| 孕妇尿路感染吃什么药| 痣的位置代表什么| 白芨有什么作用和功效| 血热吃什么药| 木鱼花为什么会动| 兑水是什么意思| 郁金香的花语是什么| 生酮饮食是什么| 暗娼什么意思| 子是什么属性| 为什么会掉头发| 缺少雌激素吃什么可以补充| 92年是什么命| 梦到孩子被蛇咬是什么意思| 癌胚抗原是什么意思| icicle是什么牌子| 主动脉夹层a型是什么病| 肚子怕冷是什么原因该怎么办| 什么是骨刺| 6月20号是什么星座| 温煦是什么意思| 肚子总胀气是什么原因| 什么筷子好| 梦见采蘑菇是什么预兆| 月经几个月不来是什么原因| 吃什么水果能降血压| 房间为什么有蟑螂| 灰指甲不治疗有什么后果| 倒灌是什么意思| 哪吒长什么样子| 印度尼西亚是什么人种| 湘潭市花是什么| 碱性水是什么水| 尉姓氏读什么的| 年柱金舆是什么意思| 7月一日是什么节日| 单男是什么意思| latex是什么| 青春期什么时候结束| 性病是什么| 什么相照| 发烧能吃什么| 上火便秘吃什么药| 伤官见官是什么意思| 鸭肫是什么部位| 中国文字博大精深什么意思| 梦龙什么口味好吃| 初次见面说什么| UFS是什么意思| 胎儿右侧脉络丛囊肿是什么意思| 什么是痰湿体质| dollars是什么意思| 一天当中什么时候血压最高| 总恶心是什么原因| 左侧附件区囊性回声是什么意思| 茜读什么| 军长是什么军衔| 蛋白粉适合什么人群吃| 排卵期什么时候开始| 尿路感染去医院挂什么科| 草字头加西念什么| 测脸型适合什么发型| 李子是什么颜色| 一笑了之是什么意思| 立春吃什么| 什么星座最聪明| 什么津津| 血尿是什么颜色| 扮猪吃老虎什么意思| 肌无力是什么原因引起的| 结账是什么意思| 白芷是什么| 英国全称叫什么| 尿毒症是什么病| 海洋中最多的生物是什么| 一什么一笑| 拉肚子能吃什么水果| 颈部ct能检查出什么| 肝脏多发囊肿什么意思| 吃什么东西增加免疫力| 黑洞里面是什么| 荨麻疹能吃什么| 化疗后吃什么排毒最快| 医院减肥挂什么科| 睡觉磨牙是什么原因| 正师级是什么军衔| 头皮痒是什么原因引起的| 花金龟吃什么| 九月二十号是什么星座| 衣锦还乡是什么意思| 绮字五行属什么| 两肋胀满闷胀是什么病| 为什么会长瘊子| 属狗是什么星座| 房颤吃什么药效果最好| 翻版是什么意思| s和m是什么意思啊| 梦见吐痰是什么意思| 股骨长是指什么| 拉不出屎是什么原因| ltp什么意思| 女性尿液发黄是什么原因| 射不出来是什么原因| 缠绵是什么意思| 武则天是什么生肖| 梅花代表什么象征意义| 胆囊壁增厚吃什么药| 矢量是什么意思| 灯塔是什么意思| 冷敷眼睛有什么好处| 风湿是什么原因造成的| 小狗肚子里有虫子吃什么药| 霉菌性阴道炎用什么药最好| 天刑是什么意思| 雪貂吃什么| 手机充电口叫什么| 格林是什么意思| 巽是什么意思| 11月29号什么星座| 治标不治本是什么意思| 三月初九是什么星座| 不二法门是什么意思| 梦见进监狱是什么兆头| 四眼狗有什么迷信说法| 脂肪肝可以吃什么水果| 冰岛为什么不让随便去| 千山暮雪结局是什么| 腔隙灶是什么意思| 白里透红的透是什么意思| 白参是什么参| 月经量少什么原因| 83年属猪是什么命| tba是什么意思| 多吃黄瓜有什么好处| 身上起红疙瘩是什么| 嗓子疼吃什么药| 优甲乐是什么药| 好五行属什么| 刚拔完牙需要注意什么| 即兴表演是什么意思| guess什么意思| 8.8是什么星座| pornhub是什么| 什么补铁| 脾阳虚吃什么食物好| 小乌龟吃什么| 来大姨妈喝酒有什么影响| 切片什么意思| utc是什么| 来例假肚子疼吃什么药| 莱猪是什么| 线束厂是做什么的| 领英是什么| 总是放屁什么原因| 什么叫戈壁滩| 希特勒为什么要杀犹太人| 自来卷的头发适合什么发型| 阴阴阳是什么卦| 坐月子吃什么补气血| 脂溢性皮炎有什么症状| 卡路里是什么意思| 血氨高会导致什么后果| 夏天感冒咳嗽吃什么药| 脾湿热吃什么中成药| 雌二醇高有什么症状| 细菌感染是什么原因| 治未病是什么意思| laura是什么意思| 脸色蜡黄是什么原因| 悬饮是什么意思| 什么是想象力| 女人梦见好多蛇是什么预兆| 欲拒还迎什么意思| paris什么意思| 护理学和护理有什么区别| iu是什么单位| 为什么大便是黑色的| 汗臭和狐臭有什么区别怎么辨别| 雪芽是什么茶| 10.28什么星座| 舌头上长泡是什么原因| 乳糖不耐受是什么症状| 糖尿病可以喝什么饮料| 身体出现白斑有可能患什么病| 肺部纤维灶是什么意思| 口腔溃疡吃什么水果| 逆爱是什么意思| 宫颈疼是什么原因| 手脱皮用什么药好得快| 女性手麻是什么原因| 什么样的红点是艾滋病| 麦麸是什么| 肚子里有积水是什么病| 肠胃炎什么症状| 咳嗽吃什么药最好| 小儿磨牙是什么原因引起的| 饮鸩止渴是什么意思| 梦见请别人吃饭是什么意思| 喝椰子汁有什么好处| 卵巢下降是什么原因| 舌头有麻木感什么原因| 尿血吃什么药| 人为什么会长痣| 前列腺钙化什么意思| 什么的月季| 四时是什么时辰| 肺大泡是什么病严重吗| n2o是什么气体| 乘风破浪什么意思| 扒皮是什么意思| 脚麻吃什么药| 什么动物菩萨心肠| 血糖低会出现什么症状| 胃出血吃什么药好| 郁是什么生肖| 什么人不能喝牛奶| 二甲双胍有什么副作用| 肾炎有什么症状| 平均血红蛋白量偏高是什么意思| 不拉屎是什么原因| 什么是同素异形体| 维生素c什么牌子好| 什么可以补气血| 江团鱼是什么鱼| 爱出汗吃什么药好| 彩超是什么| 谨言是什么意思| 晚8点是什么时辰| 百度Jump to content

滴滴司机被指暴打女乘客致唇部缝9针 警方:已立案

From Wikipedia, the free encyclopedia
百度 金融政策:保险方面,以售价为万的2017款330TSIG豪华版车型为例,新车第一年保险费用在8000左右。

In mathematics, an elliptic partial differential equation is a type of partial differential equation (PDE). In mathematical modeling, elliptic PDEs are frequently used to model steady states, unlike parabolic PDE and hyperbolic PDE which generally model phenomena that change in time. The canonical examples of elliptic PDEs are Laplace's equation and Poisson's equation. Elliptic PDEs are also important in pure mathematics, where they are fundamental to various fields of research such as differential geometry and optimal transport.

Definition

[edit]

Elliptic differential equations appear in many different contexts and levels of generality.

First consider a second-order linear PDE for an unknown function of two variables , written in the form where A, B, C, D, E, F, and G are functions of , using subscript notation for the partial derivatives. The PDE is called elliptic if by analogy to the equation for a planar ellipse. Equations with are termed parabolic while those with are hyperbolic.

For a general linear second-order PDE, the unknown u can be a function of any number of independent variables, , satisfying an equation of the form where are functions defined on the domain subject to the symmetry . This equation is called elliptic if, viewing as a function of valued in the space of symmetric matrices, all eigenvalues are greater than some positive constant: that is, there is a positive number θ such that for every point in the domain and all real numbers ξ1, ..., ξn.[1][2]

The simplest example of a second-order linear elliptic PDE is the Laplace equation, in which the coefficients are the constant functions for , , and . The Poisson equation is a slightly more general second-order linear elliptic PDE, in which f is not required to vanish. For both of these equations, the ellipticity constant θ can be taken to be 1.

The terminology is not used consistently throughout the literature: what is called "elliptic" by some authors is called "strictly elliptic" or "uniformly elliptic" by others.[3]

Nonlinear and higher-order equations

[edit]

Ellipticity can also be formulated for much more general classes of equations. For the most general second-order PDE, which is of the form

for some given function F, ellipticity is defined by linearizing the equation and applying the above linear definition. Since linearization is done at a particular function u, this means that ellipticity of a nonlinear second-order PDE depends not only on the equation itself but also on the solutions under consideration. For example, the simplest Monge–Ampère equation involves the determinant of the Hessian matrix of the unknown function:

As follows from Jacobi's formula for the derivative of a determinant, this equation is elliptic if f is a positive function and solutions satisfy the constraint of being uniformly convex.[4]

There are also higher-order elliptic PDE, the simplest example being the fourth-order biharmonic equation.[5] Even more generally, there is an important class of elliptic systems which consist of coupled partial differential equations for multiple unknown functions.[6] For example, the Cauchy–Riemann equations from complex analysis can be viewed as a first-order elliptic system for a pair of two-variable real functions.[7]

Moreover, the class of elliptic PDE (of any order, including systems) is subject to various notions of weak solutions, i.e., reformulating the equations in a way that allows for solutions with various irregularities (e.g. non-differentiability, singularities or discontinuities), so as to model non-smooth physical phenomena.[8] Such solutions are also important in variational calculus, where the direct method often produces weak solutions for elliptic systems of Euler equations.[9]

Canonical form

[edit]

Consider a second-order elliptic partial differential equation

for a two-variable function . This equation is linear in the "leading" highest-order terms, but allows nonlinear expressions involving the function values and their first derivatives; this is sometimes called a quasilinear equation.

A canonical form asks for a transformation of the domain so that, when u is viewed as a function of w and z, the above equation takes the form

for some new function F. The existence of such a transformation can be established locally if A, B, and C are real-analytic functions and, with more elaborate work, even if they are only continuously differentiable. Locality means that the necessary coordinate transformations may fail to be defined on the entire domain of u, only in some small region surrounding any particular point of the domain.[10]

Formally establishing the existence of such transformations uses the existence of solutions to the Beltrami equation. From the perspective of differential geometry, the existence of a canonical form is equivalent to the existence of isothermal coordinates for the associated Riemannian metric

on the domain. (The ellipticity condition for the PDE, namely the positivity of ACB2, is what ensures that either this tensor or its negation is indeed a Riemannian metric.)

For second-order quasilinear elliptic partial differential equations in more than two variables, a canonical form does not usually exist. This corresponds to the fact that isothermal coordinates do not exist for general Riemannian metrics in higher dimensions, only for very particular ones.[11]

Characteristics and regularity

[edit]

For the general second-order linear PDE, characteristics are defined as the null directions for the associated tensor[12]

called the principal symbol. Using the technology of the wave front set, characteristics are significant in understanding how irregular points of f propagate to the solution u of the PDE. Informally, the wave front set of a function consists of the points of non-smoothness, in addition to the directions in frequency space causing the lack of smoothness. It is a fundamental fact that the application of a linear differential operator with smooth coefficients can only have the effect of removing points from the wave front set.[13] However, all points of the original wave front set (and possibly more) are recovered by adding back in the (real) characteristic directions of the operator.[14]

In the case of a linear elliptic operator P with smooth coefficients, the principal symbol is a Riemannian metric and there are no real characteristic directions. According to the previous paragraph, it follows that the wave front set of a solution u coincides exactly with that of Pu = f. This sets up a basic regularity theorem, which says that if f is smooth (so that its wave front set is empty) then the solution u is smooth as well. More generally, the points where u fails to be smooth coincide with the points where f is not smooth.[15] This regularity phenomena is in sharp contrast with, for example, hyperbolic PDE in which discontinuities can form even when all the coefficients of an equation are smooth.

Solutions of elliptic PDEs are naturally associated with time-independent solutions of parabolic PDEs or hyperbolic PDEs. For example, a time-independent solution of the heat equation solves Laplace's equation. That is, if parabolic and hyperbolic PDEs are associated with modeling dynamical systems then the solutions of elliptic PDEs are associated with steady states. Informally, this is reflective of the above regularity theorem, as steady states are generally smoothed out versions of truly dynamical solutions. However, PDE used in modeling are often nonlinear and the above regularity theorem only applies to linear elliptic equations; moreover, the regularity theory for nonlinear elliptic equations is much more subtle, with solutions not always being smooth.

See also

[edit]

Notes

[edit]
  1. ^ Evans 2010, Chapter 6.
  2. ^ Zauderer 2006, chpt. 3.3 Classification of equations in general.
  3. ^ Compare Evans (2010, p. 311) and Gilbarg & Trudinger (2001, pp. 31, 441).
  4. ^ Gilbarg & Trudinger 2001, Chapter 17.
  5. ^ John 1982, Chapter 6; Ladyzhenskaya 1985, Section V.1; Renardy & Rogers 2004, Section 9.1.
  6. ^ Agmon 2010; Morrey 1966.
  7. ^ Courant & Hilbert 1962, p. 176.
  8. ^ Crandall, Ishii & Lions 1992; Evans 2010, Chapter 6; Gilbarg & Trudinger 2001, Chapters 8 and 9; Ladyzhenskaya 1985, Sections II.2 and V.1; Renardy & Rogers 2004, Chapter 9.
  9. ^ Giaquinta 1983; Morrey 1966, pp. 8, 480.
  10. ^ Courant & Hilbert 1962.
  11. ^ Spivak 1979.
  12. ^ H?rmander 1990, p. 152.
  13. ^ H?rmander 1990, p. 256.
  14. ^ H?rmander 1990, Theorem 8.3.1.
  15. ^ H?rmander 1990, Corollary 8.3.2.

References

[edit]

Further reading

[edit]
[edit]
明天我要离开是什么歌 血瘀吃什么中成药 前列腺增大伴钙化灶是什么意思 在什么的前面用英语怎么说 同房后出血什么原因
吃桂圆干有什么好处和坏处 血小板减少有什么危害 抗组胺是什么意思 蜈蚣吃什么 左肋骨下方是什么器官
脆皮是什么意思 什么清什么楚 什么什么的阳光 抹布是什么意思 鼻子里面痒是什么原因
小孩睡觉出很多汗是什么原因 激素六项检查挂什么科 验孕棒什么时候测准确 博士生导师是什么级别 ul是什么单位
什么人容易得心梗inbungee.com 类风湿为什么反复发烧hcv8jop0ns7r.cn 梦见好多猫是什么意思hcv8jop8ns0r.cn 荨麻疹吃什么药管用qingzhougame.com 外伤挂什么科hcv8jop7ns0r.cn
儿童口臭什么原因引起的hcv8jop7ns5r.cn 军校毕业是什么军衔zhiyanzhang.com 早上醒来手麻是什么原因hcv7jop6ns5r.cn 老狐狸是什么意思hcv8jop6ns2r.cn mi医学上是什么意思hcv8jop9ns8r.cn
川字属于五行属什么adwl56.com 五月初是什么星座hcv9jop7ns5r.cn 清晨醒来口苦是什么原因hcv8jop8ns6r.cn 什么东西越擦越小hcv8jop4ns7r.cn 暗渡陈仓是什么生肖hcv9jop0ns8r.cn
毛肚是什么东西aiwuzhiyu.com 风声鹤唳的意思是什么hcv8jop6ns0r.cn 什么的黄瓜hcv8jop6ns3r.cn 吃鱼有什么好处hcv8jop4ns1r.cn 九月十号是什么星座hcv9jop1ns5r.cn
百度