杏林指什么| 环比增长什么意思| 孩子鼻子流鼻血是什么原因| 什么木材有香味| 迎春花什么时候开| 奶油色是什么颜色| 童子是什么意思| 手上有湿疹是什么原因引起的| 血糖高什么原因| 美国为什么不敢打伊朗| 肩膀疼挂什么科室最好| 辅助治疗是什么意思| 喝什么茶降血压最好最快| 鹿晗什么星座| 叩拜是什么意思| 鱼子酱是什么东西| 胆结石吃什么水果好| 吃什么补血最快| 心脏早搏吃什么药好| 家里镜子放在什么位置比较好| 吃了紧急避孕药会有什么反应| 一什么牙刷| 什么牌子的空调好用又省电| 手发热是什么原因| 青蛙为什么叫| 轻微食物中毒吃什么药| 忠武路演员是什么意思| 忌出行是什么意思| 北京佑安医院擅长什么| 山药补什么| 家里养什么宠物好| annie英文名什么意思| 五月是什么季节| 流清鼻涕打喷嚏吃什么药| 女人吃鹿鞭有什么好处| 做梦掉牙齿是什么意思| 慢性非萎缩性胃炎吃什么药效果好| 鱼子酱是什么东西| 农历六月六是什么日子| 腰肌劳损吃什么药| 女人手心痒是什么征兆| 市公安局局长是什么级别| 试管婴儿什么价格| 没腿毛的男人代表什么| 吃一个海参相当于吃了什么| 糖霜是什么| 为什么小腿会抽筋| 金为什么克木| 种草是什么意思| 什么菜降血压| 木字旁的字与什么有关| 常州有什么特产| 吃羊肉不能吃什么水果| 兔儿爷是什么意思| 艾斯挫仑是什么药| 银杏果什么时候成熟| 癣是什么| 微创是什么| 迅雷不及掩耳之势是什么意思| 视力矫正是什么意思| 扫把星代表什么生肖| 什么的辨认| dollars是什么意思| 水浒是什么意思| 里急后重吃什么药| 车前草长什么样| 鱼眼睛吃了有什么好处| 财运亨通是什么意思| 孩子肚子疼吃什么药| 耳朵嗡嗡的响是什么原因| 1978年属马五行缺什么| 什么是铅| 巴旦木是什么树的果实| 黑壳虾吃什么食物| 戒的部首是什么| 鸭子为什么会游泳| 乡镇派出所所长是什么级别| 为什么会感染hpv| 拉锯战是什么意思| SS是什么| 牛在五行中属什么| 吃什么食物补肾| 茶叶蛋用什么茶叶最好| 拉杆箱什么材质的好| 恐龙蛋是什么水果| 肠道感染吃什么消炎药| 宝宝消化不良吃什么药| 郭晶晶什么学历| 检查视力挂什么科| 取环后吃什么恢复子宫| 心衰应该注意什么| 布施什么意思| 麝香保心丸治什么病| 家里的财位在什么位置| 气的什么| 阴道内痒是什么原因| 厚黑学讲的是什么| 甜菜根在中国叫什么| 艾灸为什么不能天天灸| 什么蛇没毒| e3是什么意思| 缜密是什么意思| 煞北是什么意思| 女性尿里带血是什么原因| 吸气是什么意思| 鱼龙是什么| 角化型脚气用什么药最好| 药流后可以吃什么水果| 怀孕都有什么症状| 什么是义务兵| 低频是什么意思| 五花肉炒什么配菜好吃| 女人阴部黑是什么原因| 什么是行政拘留| 拔完智齿能吃什么| 胡萝卜什么颜色| d二聚体是查什么的| 脸油是什么原因导致的| 受控是什么意思| 90年是什么命| 什么炎炎| 魂牵梦萦的意思是什么| 打一个喷嚏代表什么意思| 人突然晕倒是什么原因引起的| 绿茶有什么功效| 什么工作赚钱| 阿托品是什么药| 抖腿是什么原因| 喝豆浆有什么好处和坏处| 女性感染梅毒有什么症状| 虎跟什么生肖相冲| 微信拉黑和删除有什么区别| 带鱼屏是什么意思| 胃切除有什么影响| 白癜风早期症状是什么| 女人右手中指有痣代表什么| 荨麻疹吃什么药好| 小孩指甲有白点是什么原因| 时尚是什么意思| fla是什么牌子| 刚拔完智齿可以吃什么| 一度房室传导阻滞是什么意思| 串联质谱筛查是什么病| 左腿麻木是什么征兆| 什么的小球| 波司登是什么档次| 情投意合是什么意思| 嗓子疼是什么原因引起的| 2010属什么| 干燥综合症挂什么科| 万人迷是什么意思| 冠状沟是什么| 讽刺是什么意思| 华萨尼男装是什么档次| 脑供血不足什么原因引起的| 胸部有硬块挂什么科| 为什么会有阴虱子| 分娩是什么意思啊| 和合是什么意思| 小狗咳嗽吃什么药好使| 马黛茶什么味道| 煲蛇汤放什么材料好| 身体发冷是什么原因| 天德是什么意思| 小米是什么米| 木元念什么| 病毒疣是什么| 咽痛吃什么药| 子宫附件彩超检查什么| 献完血应该注意什么| 账单日是什么意思| 什么的河水填词语| 一直不来月经是什么原因| 性激素六项什么时候查最准确| 忧愁是什么意思| 子宫偏小是什么原因| 腋窝爱出汗是什么原因| 尿路感染用什么药好| 什么是病原体| 是谁送你来到我身边是什么歌| 区级以上医院是什么意思| 1202是什么星座| 异国他乡的意思是什么| 肺部占位性的病变指什么| 书记是什么职位| 农历六月十二是什么日子| 南方的粽子一般是什么口味| 两只小船儿孤孤零零是什么歌| 多囊肾是什么意思| vip是什么意思| 安全期是指什么时间| 经常流鼻血是什么病的前兆| 办身份证穿什么颜色衣服| 锌过量会引发什么症状| 食用葡萄糖是什么| 惴惴不安什么意思| 欲是什么意思| 放任是什么意思| 霉菌孢子是什么意思| 六点半是什么时辰| 6月份是什么星座| 康熙雍正乾隆是什么关系| hpd是什么意思| 与狼共舞男装什么档次| 银镯子变黑是什么原因| 补铁吃什么| 88岁属什么生肖| 省管干部是什么级别| 可乐饼为什么叫可乐饼| 什么是复句| 什么病才查凝血四项呢| 癫疯是什么原因引起| 人格魅力什么意思| 男属蛇和什么属相最配| 西安有什么美食| 过敏性鼻炎挂什么科| 生理期可以吃什么| 占有欲强什么意思| 五郎属什么生肖| 什么飞机| 一见倾心什么意思| 细菌性肺炎吃什么药| 除了火车什么车最长| 前列腺吃什么食物调理| medicine什么意思| 媞是什么意思| 北京户口有什么用| 25羟维生素d测定是什么| 食物中毒吃什么药| 律的右边读什么| a醇对皮肤有什么作用| 一个口一个有念什么| 脑炎的后遗症是什么| 子宫内膜2mm说明什么| gv是什么| 吃什么好| 晚上喝酸奶有什么好处和坏处| 尿微量白蛋白是什么意思| 武则天代表什么生肖| 爷们儿大结局是什么| 世界上最大的海是什么海| 逝者已矣生者如斯是什么意思| 腿上紫色血丝什么原因| 心率90左右意味着什么| 孩子白细胞高是什么原因| 胎位左枕前是什么意思| 麦粒肿是什么| 脂蛋白高说明什么问题| 师公是什么意思| 明朝北京叫什么| 无名指是什么经络| 为什么一生气就胃疼| 人彘是什么意思| 下肢浮肿是什么原因引起的| 丁字五行属什么| 真菌孢子阳性什么意思| 心肌炎是什么| 闲暇的意思是什么| 子宫肌瘤吃什么| 女孩子学什么专业比较好| 少阳病是什么意思| 萨满教供奉什么神| 肺肿物是什么意思| 苏子是什么| 百度Jump to content

From Wikipedia, the free encyclopedia
(Redirected from Cryo-electron microscopy)
Titan Krios at the University of Leeds
百度 ”中共在革命时期就非常注意情报工作。

Cryogenic electron microscopy (cryo-EM) is a transmission electron microscopy technique applied to samples cooled to cryogenic temperatures. For biological specimens, the structure is preserved by embedding in an environment of vitreous ice. An aqueous sample solution is applied to a grid-mesh and plunge-frozen in liquid ethane or a mixture of liquid ethane and propane.[1] While development of the technique began in the 1970s, recent advances in detector technology and software algorithms have allowed for the determination of biomolecular structures at near-atomic resolution.[2] This has attracted wide attention to the approach as an alternative to X-ray crystallography or NMR spectroscopy in the structural biology field.[3]

In 2017, the Nobel Prize in Chemistry was awarded to Jacques Dubochet, Joachim Frank, and Richard Henderson "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution."[4] Nature Methods also named cryo-EM as the "Method of the Year" in 2015.[5]

History

[edit]

Early development

[edit]

In the 1960s, the use of transmission electron microscopy for structure determination methods was limited because of the radiation damage due to high energy electron beams. Scientists hypothesized that examining specimens at low temperatures would reduce beam-induced radiation damage.[6] Both liquid helium (?269 °C or 4 K or ?452.2 °F) and liquid nitrogen (?195.79 °C or 77 K or ?320 °F) were considered as cryogens. In 1980, Erwin Knapek and Jacques Dubochet published comments on beam damage at cryogenic temperatures sharing observations that:

Thin crystals mounted on carbon film were found to be from 30 to 300 times more beam-resistant at 4 K than at room temperature... Most of our results can be explained by assuming that cryoprotection in the region of 4 K is strongly dependent on the temperature.[7]

However, these results were not reproducible and amendments were published in Nature just two years later informing that the beam resistance was less significant than initially anticipated. The protection gained at 4 K was closer to "tenfold for standard samples of L-valine",[8] than what was previously stated.

In 1981, Alasdair McDowall and Jacques Dubochet, scientists at the European Molecular Biology Laboratory, reported the first successful implementation of cryo-EM.[9] McDowall and Dubochet vitrified pure water in a thin film by spraying it onto a hydrophilic carbon film that was rapidly plunged into cryogen (liquid propane or liquid ethane cooled to 77 K). The thin layer of amorphous ice was less than 1 μm thick and an electron diffraction pattern confirmed the presence of amorphous/vitreous ice. In 1984, Dubochet's group demonstrated the power of cryo-EM in structural biology with analysis of vitrified adenovirus type 2, T4 bacteriophage, Semliki Forest virus, Bacteriophage CbK, and Vesicular-Stomatitis-Virus.[10] This paper is generally considered to mark the origin of Cryo-EM, and the technique has been developed to the point of becoming routine at numerous laboratories throughout the world.

The energy of the electrons used for imaging (80–300 kV) is, by far, high enough that covalent bonds of organic and biological samples can be broken in an inelastic scattering interaction. When imaging specimens are vulnerable to radiation damage, it is necessary to limit the electron exposure used to acquire the image. These low exposures require that the images of thousands or even millions of identical frozen molecules be selected, aligned, and averaged to obtain high-resolution maps, using specialized software. A significant improvement in structural features was achieved in 2012 by the introduction of direct electron detectors and better computational algorithms.[11]

Recent advancements

[edit]

Advances in electron detector technology, particularly DED (Direct Electron Detectors) as well as more powerful software imaging algorithms have allowed for the determination of macromolecular structures at near-atomic resolution.[12] Imaged macromolecules include viruses, ribosomes, mitochondria, ion channels, and enzyme complexes. Starting in 2018, cryo-EM could applied to structures as small as hemoglobin (64 kDa)[13] and with resolutions up to 1.8 ?.[14] In 2019, cryo-EM structures represented 2.5% of structures deposited in the Protein Data Bank,[15] and this number continues to grow.[16] An application of cryo-EM is cryo-electron tomography (cryo-ET), where a 3D reconstruction of the sample is created from tilted 2D images.

The 2010s were marked with drastic advancements of electron cameras. Notably, the improvements made to direct electron detectors have led to a "resolution revolution"[17] pushing the resolution barrier beneath the crucial ~2-3 ? limit to resolve amino acid position and orientation.[18]

Henderson (MRC Laboratory of Molecular Biology, Cambridge, UK) formed a consortium with engineers at the Rutherford Appleton Laboratory and scientists at the Max Planck Society to fund and develop a first prototype. The consortium then joined forces with the electron microscope manufacturer FEI to roll out and market the new design. At about the same time, Gatan Inc. of Pleasanton, California came out with a similar detector designed by Peter Denes (Lawrence Berkeley National Laboratory) and David Agard (University of California, San Francisco). A third type of camera was developed by Nguyen-Huu Xuong at the Direct Electron company (San Diego, California).[17]

More recently, advancements in the use of protein-based imaging scaffolds are helping to solve the problems of sample orientation bias and size limit. Proteins smaller than ~50 kDa generally have too low a signal-to-noise ratio (SNR) to be able to resolve protein particles in the image, making 3D reconstruction difficult or impossible.[19] The SNR of smaller proteins can be improved by binding them to an imaging scaffold. The Yeates group at UCLA was able to create a clearer image of three variants of KRAS (roughly 19 kDa in size) by utilising a rigid imaging scaffold, and using DARPins as modular binding domains between the scaffold and the protein of interest.[20]

2017 Nobel Prize in Chemistry

[edit]

In recognition of the impact cryo-EM has had on biochemistry, three scientists, Jacques Dubochet, Joachim Frank and Richard Henderson, were awarded the Nobel Prize in Chemistry "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution."[4]

Comparisons to X-ray crystallography

[edit]

Traditionally, X-ray crystallography has been the most popular technique for determining the 3D structures of biological molecules.[21] However, the aforementioned improvements in cryo-EM have increased its popularity as a tool for examining the details of biological molecules. Since 2010, yearly cryo-EM structure deposits have outpaced X-ray crystallography.[22] Though X-ray crystallography has drastically more total deposits due to a decades-longer history, total deposits of the two methods are projected to eclipse around 2035.[22]

The resolution of X-ray crystallography is limited by crystal homogeneity,[23] and coaxing biological molecules with unknown ideal crystallization conditions into a crystalline state can be very time-consuming, in extreme cases taking months or even years.[24] To contrast, sample preparation in cryo-EM may require several rounds of screening and optimization to overcome issues such as protein aggregation and preferred orientations,[25][26] but it does not require the sample to form a crystal, rather samples for cryo-EM are flash-frozen and examined in their near-native states.[27]

According to Proteopedia, the median resolution achieved by X-ray crystallography (as of May 19, 2019) on the Protein Data Bank is 2.05 ?,[23] and the highest resolution achieved on record (as of September 30, 2022) is 0.48 ?.[28] As of 2020, the majority of the protein structures determined by cryo-EM are at a lower resolution of 3–4 ?.[29] However, as of 2020, the best cryo-EM resolution has been recorded at 1.22 ?,[26] making it a competitor in resolution in some cases.

Biological specimens

[edit]

Thin film

[edit]

The biological material is spread on an electron microscopy grid and is preserved in a frozen-hydrated state by rapid freezing, usually in liquid ethane near liquid nitrogen temperature. By maintaining specimens at liquid nitrogen temperature or colder, they can be introduced into the high-vacuum of the electron microscope column. Most biological specimens are extremely radiosensitive, so they must be imaged with low-dose techniques (usefully, the low temperature of transmission electron cryomicroscopy provides an additional protective factor against radiation damage).

Consequently, the images are extremely noisy. For some biological systems it is possible to average images to increase the signal-to-noise ratio and retrieve high-resolution information about the specimen using the technique known as single particle analysis. This approach in general requires that the things being averaged are identical, although some limited conformational heterogeneity can now be studied (e.g. ribosome). Three-dimensional reconstructions from CryoTEM images of protein complexes and viruses have been solved to sub-nanometer or near-atomic resolution, allowing new insights into the structure and biology of these large assemblies.

Analysis of ordered arrays of protein, such as 2-D crystals of transmembrane proteins or helical arrays of proteins, also allows a kind of averaging which can provide high-resolution information about the specimen. This technique is called electron crystallography.

Vitreous sections

[edit]

The thin film method is limited to thin specimens (typically < 500 nm) because the electrons cannot cross thicker samples without multiple scattering events. Thicker specimens can be vitrified by plunge freezing (cryofixation) in ethane (up to tens of μm in thickness) or more commonly by high pressure freezing (up to hundreds of μm). They can then be cut in thin sections (40 to 200 nm thick) with a diamond knife in a cryoultramicrotome at temperatures lower than ?135 °C (devitrification temperature). The sections are collected on an electron microscope grid and are imaged in the same manner as specimen vitrified in thin film. This technique is called transmission electron cryomicroscopy of vitreous sections (CEMOVIS) or transmission electron cryomicroscopy of frozen-hydrated sections.

Material specimens

[edit]

In addition to allowing vitrified biological samples to be imaged, CryoTEM can also be used to image material specimens that are too volatile in vacuum to image using standard, room temperature electron microscopy. For example, vitrified sections of liquid-solid interfaces can be extracted for analysis by CryoTEM,[30] and sulfur, which is prone to sublimation in the vacuum of electron microscopes, can be stabilized and imaged in CryoTEM.[31]

Image processing in cryo-TEM

[edit]

Even though in the majority of approaches in electron microscopy one tries to get the best resolution image of the material, it is not always the case in cryo-TEM. Besides all the benefits of high resolution images, the signal to noise ratio remains the main hurdle that prevents assigning orientation to each particle. For example, in macromolecule complexes, there are several different structures that are being projected from 3D to 2D during imaging and if they are not distinguished the result of image processing will be a blur. That is why the probabilistic approaches become more powerful in this type of investigation.[32] There are two popular approaches that are widely used nowadays in cryo-EM image processing, the maximum likelihood approach that was discovered in 1998[33] and relatively recently adapted Bayesian approach.[34]

The maximum likelihood estimation approach comes to this field from the statistics. Here, all the possible orientations of particles are summed up to get the resulting probability distribution. We can compare this to a typical least square estimation where particles get exact orientations per image.[35] This way, the particles in the sample get "fuzzy" orientations after calculations, weighted by corresponding probabilities. The whole process is iterative and with each next iteration the model gets better. The good conditions for making the model that closely represent the real structure is when the data does not have too much noise and the particles do not have any preferential direction. The main downside of maximum likelihood approach is that the result depends on the initial guess and model optimization can sometimes get stuck at local minimum.[36]

The Bayesian approach that is now being used in cryo-TEM is empirical by nature. This means that the distribution of particles is based on the original dataset. Similarly, in the usual Bayesian method there is a fixed prior probability that is changed after the data is observed. The main difference from the maximum likelihood estimation lies in special reconstruction term that helps smoothing the resulting maps while also decreasing the noise during reconstruction.[35] The smoothing of the maps occurs through assuming prior probability to be a Gaussian distribution and analyzing the data in the Fourier space. Since the connection between the prior knowledge and the dataset is established, there is less chance for human factor errors which potentially increases the objectivity of image reconstruction.[34]

With emerging new methods of cryo-TEM imaging and image reconstruction the new software solutions appear that help to automate the process. After the empirical Bayesian approach have been implemented in the open source computer program RELION (REgularized LIkelihood OptimizatioN) for 3D reconstruction,[37][38] the program became widespread in the cryo-TEM field. It offers a range of corrections that improve the resolution of reconstructed images, allows implementing versatile scripts using python language and executes the usual tasks of 2D/3D model classifications or creating de novo models.[39][40]

Techniques

[edit]

A variety of techniques can be used in CryoTEM.[41] Popular techniques include:

  1. Single particle analysis (SPA)
    1. Time-resolved CryoTEM[42][43][44]
  2. Electron cryotomography (cryoET)
  3. Electron crystallography
    1. Analysis of two-dimensional crystals
    2. Analysis of helical filaments or tubes
    3. Microcrystal Electron Diffraction (MicroED)[45][46][47][48]

Correlative light cryo-TEM and cryo-ET

[edit]

In 2019, correlative light cryo-TEM and cryo-ET were used to observe tunnelling nanotubes (TNTs) in neuronal cells.[49]

Scanning electron cryomicroscopy

[edit]

Scanning electron cryomicroscopy (cryoSEM) is a scanning electron microscopy technique with a scanning electron microscope's cold stage in a cryogenic chamber.

Cryogenic transmission electron microscopy

[edit]

Cryogenic transmission electron microscopy (cryo-TEM) is a transmission electron microscopy technique that is used in structural biology and materials science. Colloquially, the term "cryogenic electron microscopy" or its shortening "cryo-EM" refers to cryogenic transmission electron microscopy by default, as the vast majority of cryo-EM is done in transmission electron microscopes, rather than scanning electron microscopes.

Centers

[edit]

The Federal Institute of Technology, the University of Lausanne and the University of Geneva opened the Dubochet Center For Imaging (DCI) at the end of November 2021, for the purposes of applying and further developing cryo-EM.[50] Less than a month after the first identification of the SARS-CoV-2 Omicron variant, researchers at the DCI were able to define its structure, identify the crucial mutations to circumvent individual vaccines and provide insights for new therapeutic approaches.[51]

The Danish National cryo-EM Facility also known as EMBION was inaugurated on December 1, 2016. EMBION is a cryo-EM consortium between Danish Universities (Aarhus University host and University of Copenhagen co-host).

Single particle analysis workflow

Advanced methods

[edit]

See also

[edit]

References

[edit]
  1. ^ Tivol WF, Briegel A, Jensen GJ (October 2008). "An improved cryogen for plunge freezing". Microscopy and Microanalysis. 14 (5): 375–379. Bibcode:2008MiMic..14..375T. doi:10.1017/S1431927608080781. PMC 3058946. PMID 18793481.
  2. ^ Cheng Y, Grigorieff N, Penczek PA, Walz T (April 2015). "A primer to single-particle cryo-electron microscopy". Cell. 161 (3): 438–449. doi:10.1016/j.cell.2015.03.050. PMC 4409659. PMID 25910204.
  3. ^ Stoddart C (1 March 2022). "Structural biology: How proteins got their close-up". Knowable Magazine. doi:10.1146/knowable-022822-1. S2CID 247206999. Retrieved 25 March 2022.
  4. ^ a b "The Nobel Prize in Chemistry 2017". NobelPrize.org. Retrieved 2025-08-07.
  5. ^ Doerr A (January 2017). "Cryo-electron tomography". Nature Methods. 14 (1): 34. doi:10.1038/nmeth.4115. ISSN 1548-7091. S2CID 27162203.
  6. ^ Dubochet J, Knapek E (April 2018). "Ups and downs in early electron cryo-microscopy". PLOS Biology. 16 (4): e2005550. doi:10.1371/journal.pbio.2005550. PMC 5929567. PMID 29672565.
  7. ^ Knapek E, Dubochet J (August 1980). "Beam damage to organic material is considerably reduced in cryo-electron microscopy". Journal of Molecular Biology. 141 (2): 147–161. doi:10.1016/0022-2836(80)90382-4. PMID 7441748.
  8. ^ Newmark P (30 September 1982). "Cryo-transmission microscopy Fading hopes". Nature. 299 (5882): 386–387. Bibcode:1982Natur.299..386N. doi:10.1038/299386c0.
  9. ^ Dubochet J, McDowall AW (December 1981). "Vitrification of Pure Water for Electron Microscopy". Journal of Microscopy. 124 (3): 3–4. doi:10.1111/j.1365-2818.1981.tb02483.x.
  10. ^ Adrian M, Dubochet J, Lepault J, McDowall AW (March 1984). "Cryo-electron microscopy of viruses". Nature. 308 (5954): 32–36. Bibcode:1984Natur.308...32A. doi:10.1038/308032a0. PMID 6322001. S2CID 4319199.
  11. ^ Callaway E (September 2015). "The revolution will not be crystallized: a new method sweeps through structural biology". Nature. 525 (7568): 172–4. Bibcode:2015Natur.525..172C. doi:10.1038/525172a. PMID 26354465.
  12. ^ Murata K, Wolf M (Feb 2018). "Cryo-electron microscopy for structural analysis of dynamic biological macromolecules". Biochimica et Biophysica Acta (BBA) - General Subjects. 1862 (2): 324–334. doi:10.1016/j.bbagen.2017.07.020. PMID 28756276.
  13. ^ Khoshouei M, Radjainia M, Baumeister W, Danev R (June 2017). "Cryo-EM structure of haemoglobin at 3.2 ? determined with the Volta phase plate". Nature Communications. 8: 16099. Bibcode:2017NatCo...816099K. doi:10.1038/ncomms16099. PMC 5497076. PMID 28665412.
  14. ^ Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JL, Subramaniam S (June 2016). "Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery". Cell. 165 (7): 1698–1707. doi:10.1016/j.cell.2016.05.040. PMC 4931924. PMID 27238019.
  15. ^ "PDB Data Distribution by Experimental Method and Molecular Type". www.rcsb.org. Retrieved 2025-08-07.
  16. ^ "PDB Statistics: Growth of Structures from 3DEM Experiments Released per Year". www.rcsb.org. Retrieved 2025-08-07.
  17. ^ a b Kühlbrandt, Werner (2025-08-07). "The Resolution Revolution". Science. 343 (6178): 1443–1444. Bibcode:2014Sci...343.1443K. doi:10.1126/science.1251652. ISSN 0036-8075. PMID 24675944. S2CID 35524447.
  18. ^ Kuster, Daniel J.; Liu, Chengyu; Fang, Zheng; Ponder, Jay W.; Marshall, Garland R. (2025-08-07). "High-Resolution Crystal Structures of Protein Helices Reconciled with Three-Centered Hydrogen Bonds and Multipole Electrostatics". PLOS ONE. 10 (4): e0123146. Bibcode:2015PLoSO..1023146K. doi:10.1371/journal.pone.0123146. ISSN 1932-6203. PMC 4403875. PMID 25894612.
  19. ^ Herzik, Mark A.; Wu, Mengyu; Lander, Gabriel C. (2025-08-07). "High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM". Nature Communications. 10 (1): 1032. Bibcode:2019NatCo..10.1032H. doi:10.1038/s41467-019-08991-8. ISSN 2041-1723. PMC 6399227. PMID 30833564.
  20. ^ Castells-Graells R, Meador K, Arbing MA, Sawaya MR, Gee M, Cascio D, et al. (September 2023). "Cryo-EM structure determination of small therapeutic protein targets at 3 ?-resolution using a rigid imaging scaffold". Proceedings of the National Academy of Sciences of the United States of America. 120 (37): e2305494120. Bibcode:2023PNAS..12005494C. doi:10.1073/pnas.2305494120. PMC 10500258. PMID 37669364.
  21. ^ Smyth MS, Martin JH (February 2000). "x ray crystallography". Molecular Pathology. 53 (1): 8–14. doi:10.1136/mp.53.1.8. PMC 1186895. PMID 10884915.
  22. ^ a b Chiu, Wah; Schmid, Michael F.; Pintilie, Grigore D.; Lawson, Catherine L. (January 2021). "Evolution of standardization and dissemination of cryo-EM structures and data jointly by the community, PDB, and EMDB". Journal of Biological Chemistry. 296: 100560. doi:10.1016/j.jbc.2021.100560. ISSN 0021-9258. PMC 8050867. PMID 33744287.
  23. ^ a b "Resolution - Proteopedia, life in 3D". proteopedia.org. Retrieved 2025-08-07.
  24. ^ Callaway E (February 2020). "Revolutionary cryo-EM is taking over structural biology". Nature. 578 (7794): 201. Bibcode:2020Natur.578..201C. doi:10.1038/d41586-020-00341-9. PMID 32047310.
  25. ^ Lyumkis, Dmitry (2025-08-07). "Challenges and opportunities in cryo-EM single-particle analysis". Journal of Biological Chemistry. 294 (13): 5181–5197. doi:10.1074/jbc.rev118.005602. ISSN 0021-9258. PMC 6442032. PMID 30804214.
  26. ^ a b Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S, Brown PM, et al. (November 2020). "Single-particle cryo-EM at atomic resolution". Nature. 587 (7832): 152–156. Bibcode:2020Natur.587..152N. doi:10.1038/s41586-020-2829-0. PMC 7611073. PMID 33087931.
  27. ^ Wang HW, Wang JW (January 2017). "How cryo-electron microscopy and X-ray crystallography complement each other". Protein Science. 26 (1): 32–39. doi:10.1002/pro.3022. PMC 5192981. PMID 27543495.
  28. ^ Schmidt A, Teeter M, Weckert E, Lamzin VS (April 2011). "Crystal structure of small protein crambin at 0.48 ? resolution". Acta Crystallographica. Section F, Structural Biology and Crystallization Communications. 67 (Pt 4): 424–428. doi:10.1107/S1744309110052607. PMC 3080141. PMID 21505232.
  29. ^ Yip KM, Fischer N, Paknia E, Chari A, Stark H (November 2020). "Atomic-resolution protein structure determination by cryo-EM". Nature. 587 (7832): 157–161. Bibcode:2020Natur.587..157Y. doi:10.1038/s41586-020-2833-4. PMID 33087927. S2CID 224823207.
  30. ^ Zachman MJ, Asenath-Smith E, Estroff LA, Kourkoutis LF (December 2016). "Site-Specific Preparation of Intact Solid-Liquid Interfaces by Label-Free In Situ Localization and Cryo-Focused Ion Beam Lift-Out". Microscopy and Microanalysis. 22 (6): 1338–1349. Bibcode:2016MiMic..22.1338Z. doi:10.1017/S1431927616011892. PMID 27869059.
  31. ^ Levin BD, Zachman MJ, Werner JG, Sahore R, Nguyen KX, Han Y, Xie B, Ma L, Archer LA, Giannelis EP, Wiesner U, Kourkoutis LF, Muller DA (February 2017). "Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts". Microscopy and Microanalysis. 23 (1): 155–162. Bibcode:2017MiMic..23..155L. doi:10.1017/S1431927617000058. PMID 28228169. S2CID 6801783.
  32. ^ Cheng, Yifan (2025-08-07). "Single-particle cryo-EM—How did it get here and where will it go". Science. 361 (6405): 876–880. Bibcode:2018Sci...361..876C. doi:10.1126/science.aat4346. ISSN 0036-8075. PMC 6460916. PMID 30166484.
  33. ^ Sigworth, F.J. (1998). "A Maximum-Likelihood Approach to Single-Particle Image Refinement". Journal of Structural Biology. 122 (3): 328–339. doi:10.1006/jsbi.1998.4014. PMID 9774537.
  34. ^ a b Scheres, Sjors H.W. (January 2012). "A Bayesian View on Cryo-EM Structure Determination". Journal of Molecular Biology. 415 (2): 406–418. doi:10.1016/j.jmb.2011.11.010. PMC 3314964. PMID 22100448.
  35. ^ a b Nogales, Eva; Scheres, Sjors H.W. (May 2015). "Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity". Molecular Cell. 58 (4): 677–689. doi:10.1016/j.molcel.2015.02.019. ISSN 1097-2765. PMC 4441764. PMID 26000851.
  36. ^ Sigworth, Fred J. (2025-08-07). "Principles of cryo-EM single-particle image processing". Microscopy. 65 (1): 57–67. doi:10.1093/jmicro/dfv370. ISSN 2050-5698. PMC 4749045. PMID 26705325.
  37. ^ Scheres, Sjors H. W. (2025-08-07). "RELION: Implementation of a Bayesian approach to cryo-EM structure determination". Journal of Structural Biology. 180 (3): 519–530. doi:10.1016/j.jsb.2012.09.006. ISSN 1047-8477. PMC 3690530. PMID 23000701.
  38. ^ "RELION: Image-processing software for cryo-electron microscopy". GitHub. 3dem. 27 October 2023. Retrieved 27 October 2023.
  39. ^ Bai, Xiao-chen; McMullan, Greg; Scheres, Sjors H.W (January 2015). "How cryo-EM is revolutionizing structural biology". Trends in Biochemical Sciences. 40 (1): 49–57. doi:10.1016/j.tibs.2014.10.005. ISSN 0968-0004. PMID 25544475. S2CID 19727349.
  40. ^ Zivanov, Jasenko; Nakane, Takanori; Forsberg, Bj?rn O; Kimanius, Dari; Hagen, Wim JH; Lindahl, Erik; Scheres, Sjors HW (2025-08-07). Egelman, Edward H; Kuriyan, John (eds.). "New tools for automated high-resolution cryo-EM structure determination in RELION-3". eLife. 7: e42166. doi:10.7554/eLife.42166. ISSN 2050-084X. PMC 6250425. PMID 30412051.
  41. ^ Presentation on Cryoelectron Microscopy | PharmaXChange.info
  42. ^ Fu Z, Kaledhonkar S, Borg A, Sun M, Chen B, Grassucci RA, Ehrenberg M, Frank J (December 2016). "Key Intermediates in Ribosome Recycling Visualized by Time-Resolved Cryoelectron Microscopy". Structure. 24 (12): 2092–2101. doi:10.1016/j.str.2016.09.014. PMC 5143168. PMID 27818103.
  43. ^ Feng X, Fu Z, Kaledhonkar S, Jia Y, Shah B, Jin A, Liu Z, Sun M, Chen B, Grassucci RA, Ren Y, Jiang H, Frank J, Lin Q (April 2017). "A Fast and Effective Microfluidic Spraying-Plunging Method for High-Resolution Single-Particle Cryo-EM". Structure. 25 (4): 663–670.e3. doi:10.1016/j.str.2017.02.005. PMC 5382802. PMID 28286002.
  44. ^ Chen B, Kaledhonkar S, Sun M, Shen B, Lu Z, Barnard D, Lu TM, Gonzalez RL, Frank J (June 2015). "Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy". Structure. 23 (6): 1097–105. doi:10.1016/j.str.2015.04.007. PMC 4456197. PMID 26004440.
  45. ^ Shi D, Nannenga BL, Iadanza MG, Gonen T (November 2013). "Three-dimensional electron crystallography of protein microcrystals". eLife. 2: e01345. doi:10.7554/eLife.01345. PMC 3831942. PMID 24252878.
  46. ^ Nannenga BL, Shi D, Leslie AG, Gonen T (September 2014). "High-resolution structure determination by continuous-rotation data collection in MicroED". Nature Methods. 11 (9): 927–930. doi:10.1038/nmeth.3043. PMC 4149488. PMID 25086503.
  47. ^ Shi D, Nannenga BL, de la Cruz MJ, Liu J, Sawtelle S, Calero G, Reyes FE, Hattne J, Gonen T (May 2016). "The collection of MicroED data for macromolecular crystallography". Nature Protocols. 11 (5): 895–904. doi:10.1038/nprot.2016.046. PMC 5357465. PMID 27077331.
  48. ^ de la Cruz MJ, Hattne J, Shi D, Seidler P, Rodriguez J, Reyes FE, Sawaya MR, Cascio D, Weiss SC, Kim SK, Hinck CS, Hinck AP, Calero G, Eisenberg D, Gonen T (February 2017). "Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED". Nature Methods. 14 (4): 399–402. doi:10.1038/nmeth.4178. PMC 5376236. PMID 28192420.
  49. ^ Sartori-Rupp A, Cordero Cervantes D, Pepe A, Gousset K, Delage E, Corroyer-Dulmont S, et al. (January 2019). "Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells". Nature Communications. 10 (1): 342. Bibcode:2019NatCo..10..342S. doi:10.1038/s41467-018-08178-7. PMC 6341166. PMID 30664666.
  50. ^ "Inauguration of the Dubochet Center for Imaging (DCI) on the campuses of UNIGE, UNIL and EPFL". unige.ch. 2025-08-07. Retrieved 2025-08-07.
  51. ^ "Scientists uncover Omicron variant mysteries using microscopes". swissinfo.ch. 2025-08-07. Retrieved 2025-08-07.
  52. ^ B?uerlein, Felix J. B.; Baumeister, Wolfgang (2025-08-07). "Towards Visual Proteomics at High Resolution". Journal of Molecular Biology. From Protein Sequence to Structure at Warp Speed: How Alphafold Impacts Biology. 433 (20): 167187. doi:10.1016/j.jmb.2021.167187. ISSN 0022-2836. PMID 34384780.
  53. ^ Nannenga BL, Shi D, Leslie AG, Gonen T (September 2014). "High-resolution structure determination by continuous-rotation data collection in MicroED". Nature Methods. 11 (9): 927–930. doi:10.1038/nmeth.3043. PMC 4149488. PMID 25086503.
  54. ^ Jones CG, Martynowycz MW, Hattne J, Fulton TJ, Stoltz BM, Rodriguez JA, et al. (November 2018). "The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination". ACS Central Science. 4 (11): 1587–1592. doi:10.1021/acscentsci.8b00760. PMC 6276044. PMID 30555912.
  55. ^ de la Cruz MJ, Hattne J, Shi D, Seidler P, Rodriguez J, Reyes FE, et al. (February 2017). "Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED". Nature Methods. 14 (4): 399–402. doi:10.1038/nmeth.4178. PMC 5376236. PMID 28192420.
  56. ^ Gruene T, Wennmacher JT, Zaubitzer C, Holstein JJ, Heidler J, Fecteau-Lefebvre A, et al. (December 2018). "Rapid Structure Determination of Microcrystalline Molecular Compounds Using Electron Diffraction". Angewandte Chemie. 57 (50): 16313–16317. doi:10.1002/anie.201811318. PMC 6468266. PMID 30325568.
  57. ^ Cheng Y (August 2018). "Single-particle cryo-EM-How did it get here and where will it go". Science. 361 (6405): 876–880. Bibcode:2018Sci...361..876C. doi:10.1126/science.aat4346. PMC 6460916. PMID 30166484.
  58. ^ Xiao, C., Fischer, M.G., Bolotaulo, D.M., Ulloa-Rondeau, N., Avila, G.A., and Suttle, C.A. (2017) "Cryo-EM reconstruction of the Cafeteria roenbergensis virus capsid suggests novel assembly pathway for giant viruses". Scientific Reports, 7: 5484. doi:10.1038/s41598-017-05824-w.
刘邦为什么杀韩信 冷冻和冷藏有什么区别 什么食物含维生素b12最多 农历今天属什么生肖 开救护车需要什么条件
蚊子不咬什么体质的人 空调变频和定频有什么区别 软组织损伤是什么意思 青少年长白头发是什么原因 林是什么生肖
嘴下面起痘是什么原因 搪塞是什么意思 麦冬和什么相克 下午一点到三点是什么时辰 双五行属什么
桂林有什么好玩的景点 法克是什么意思 今年流行什么发型女 气血淤堵吃什么药 fdp是什么意思
br是什么意思hcv9jop4ns5r.cn 儿童个子矮小看什么科hcv8jop8ns3r.cn 一什么影子hcv9jop2ns7r.cn 怀孕初期吃什么食物好hcv8jop5ns6r.cn 复方氨酚苯海拉明片是什么药hcv9jop0ns2r.cn
六允读什么dayuxmw.com 正佳广场有什么好玩的hcv8jop6ns4r.cn 高密度脂蛋白胆固醇偏低什么意思hcv9jop3ns6r.cn 左肩膀疼是什么原因hcv8jop4ns2r.cn 尿素是什么肥料hcv9jop4ns4r.cn
自然数的定义是什么hcv8jop8ns1r.cn 后入是什么意思hcv8jop0ns0r.cn 节育环嵌顿是什么意思hcv7jop6ns8r.cn 孕妇吃什么坚果比较好hcv8jop9ns5r.cn 打扰是什么意思hcv8jop3ns9r.cn
备孕吃什么好hcv9jop4ns1r.cn 脚心起水泡是什么病症hcv8jop3ns2r.cn 小孩子肚子痛吃什么药zsyouku.com 什么是腺瘤hcv8jop0ns1r.cn 中医说的湿气重是什么意思hcv9jop4ns6r.cn
百度