9月份出生的是什么星座| 比肩劫财是什么意思| 什么是半月板| 四平八稳是什么生肖| 男生喉结不明显是为什么| 吃什么可以拉肚子通便| 秋葵与什么菜相克| 尿道感染有什么现象| 3岁小孩不会说话是什么原因| 异质性是什么意思| 蓝朋友什么意思| 事半功倍是什么意思| 飞黄腾达是什么意思| 挂是什么意思| b超是查什么的| 为什么都开头孢不开阿莫西林| 甲状腺是什么科| 淼字五行属什么| 腋毛癣用什么药膏| 修复子宫内膜吃什么药| 度蜜月什么意思| 口臭看什么科| 头晕是什么原因引起| 目瞪口呆是什么生肖| 养成系是什么意思| 口腔溃疡吃什么药好得快| 体温低是什么原因| 白细胞介素是什么| 小乌龟吃什么食物| 喜什么自什么| 宜五行属什么| 血糖低会出现什么症状| 胆红素是什么意思| 跳什么舞减肥最快| 日行一善下一句是什么| 手关节疼痛挂什么科| 藿香正气水什么人不能喝| 狗肉和什么食物相克| 木加一笔有什么字| 粗粮是什么| 什么叫凤凰男| 单核细胞比率偏高是什么意思| 什么烧鸭子好吃| 龙肉指的是什么肉| 龙蛇混杂是什么意思| wtf什么意思| 痔疮什么情况下需要做手术| 莳字五行属什么| 什么是头寸| 社保局是干什么的| 五十路是什么意思| 惺惺相惜什么意思| 绿豆汤是什么颜色| 1908年中国发生了什么| 荡漾什么意思| usc是什么意思| 高血压可以吃什么| 黄曲霉素是什么| 火供是什么意思| 小腿为什么会抽筋| s和m分别是什么意思| 乙肝不能吃什么东西| 招财猫鱼吃什么| 眼珠发黄是什么原因| 天生丽质难自弃是什么意思| 靶器官是什么意思| 宰相的宰最早指什么| 屈曲是什么意思| 装垃圾的工具叫什么| 湿厕纸是干什么用的| 豆芽和什么一起炒好吃| 被跳蚤咬了涂什么药膏| 石斛什么价格| 梦见韭菜是什么预兆| 什么叫补充公积金| 吐司是什么意思| 姓陆的女孩取什么名字好| 榴莲不可以和什么一起吃| 至多是什么意思| 黄体破裂有什么症状| 梦见抢银行是什么意思| 低密度脂蛋白高有什么危害| 3月21号是什么星座| 肺结节什么症状| 散瞳是什么意思| gi食物是什么意思| 胃肠功能紊乱是什么意思| 淋巴细胞数偏高是什么意思| 新生儿满月打什么疫苗| 蒙脱石散是什么药| 贡眉是什么茶| 高烧吃什么药退烧快| 去威海玩需要准备什么| 王维字什么| 关节退变什么意思| est.是什么意思| 俄狄浦斯情结是什么意思| 去年属什么生肖| 刚怀孕有什么办法打掉| 生物技术专业学什么| 老人吃饭老是噎着是什么原因| 八个月宝宝可以吃什么水果| as材质是什么材料| 干是什么意思| 衣服最小码是什么字母| 粉尘螨是什么| 什么年什么月| 女人吃鹿鞭有什么好处| 什么是钼靶检查| 鲁迅原名是什么| 奥沙利文为什么叫火箭| 甲肝是什么病| 眼睛发黄是什么原因引起的| 劳伦斯属于什么档次| 脖子爱出汗是什么原因| 为什么会便血| 喉咙痛感冒吃什么药| 肉芽肿是什么病| 未土是什么土| 什么食物降血脂| 522是什么意思| 昆仑雪菊有什么作用| 脸上长痘挂什么科| 栉风沐雨是什么意思| p波增宽是什么意思| 吃什么水果美白| 住院需要带什么| 1972年出生属什么生肖| 椰子水是什么味道| 柠檬加蜂蜜泡水喝有什么功效| 补给是什么意思| 脊椎炎有什么症状| 冰箱底部漏水是什么原因| 儿童反复发烧什么原因| 查询电话号码拨打什么| 中医四诊指的是什么| 眼睛红血丝是什么原因| 小孩多动症是什么原因引起的| 幼儿睡觉出汗多是什么原因| 中央候补委员是什么级别| 日新月异什么意思| 4.20什么星座| 直男什么意思| 做梦梦见鬼是什么意思| 新生儿老是打嗝是什么原因| 碘伏什么颜色| 免冠是什么意思| 甲钴胺有什么副作用| 黄体酮低吃什么补得快| 鬼冢虎为什么很少人穿| vgr100是什么药| 伤口愈合为什么会痒| 2月2号是什么星座| 酸菜鱼是用什么鱼| 玫瑰疹是什么病| 膝盖疼是什么原因| 火可念什么| 女性内分泌失调有什么症状| 存款准备金率是什么意思| 摧残是什么意思| 闰年是什么| 厨子什么意思| 小姑独处是什么意思| 老人经常头晕是什么原因引起的| 冻顶乌龙茶是什么茶| 国安是什么单位| 肾积液是什么原因造成的| 祁是什么意思| 隐血试验阴性是什么意思| rx是什么意思| 手掌发黄是什么原因| 红霉素软膏有什么作用| 皮肤发白一块一块的是什么病| dmc是什么意思| 什么东西能让皮肤变白| 鸽子咳嗽吃什么药最好| 全脂牛奶和脱脂牛奶有什么区别| 处长什么级别| 电饭煲什么内胆最好| 话唠是什么意思| 痱子是什么| upup是什么意思| 耳道炎用什么药最有效| 醋坛子是什么意思| 咸鱼翻身是什么意思| 野生黄芪长什么样子的图片| 庶子什么意思| 胸闷是什么原因引起的| 鬼压床是什么原因| noisy是什么意思| 尐是什么意思| 肺动脉流什么血| 花中皇后指的是什么花| 总胆固醇高是什么原因| 非洲割礼是什么| 肾有问题挂什么科| 为什么会发生地震| 什么是性瘾症| 什么而什么见| 大暑是什么时候| wonderland是什么意思| 夹生是什么意思| 杨梅是什么季节的水果| 瓜子脸适合什么刘海| 12306什么时候放票| ca199偏高是什么意思| 金色和什么颜色搭配好看| 心绪是什么意思| 洁癖是什么意思| 拔牙后可以吃什么食物| 补办身份证要带什么| 卧是什么意思| 胰岛素抵抗是什么意思| 鸡子是什么东西| 眼带用什么方法消除| 属马的生什么属相的宝宝好| 水马是什么| 上颌窦炎是什么症状| 经常口臭的人是什么原因引起的| 8月15号是什么日子| 障碍是什么意思| 舌苔发白厚吃什么药| 甄嬛传什么时候上映的| 八月初十是什么星座| 菜心又叫什么菜| 低钾是什么原因造成的| 盗墓笔记讲的是什么故事| 机体是什么意思| 洞房花烛是什么生肖| 台风什么时候到上海| 1999属什么生肖| 昏天黑地什么意思| 胃烧心吃什么能缓解| 6月30号是什么星座| 夹生是什么意思| 粒细胞低是什么原因| 有病是什么意思| 尿路感染吃什么药好得快| 小便带血是什么原因女性| 铁皮石斛有什么作用| 71年猪是什么命| 让我爱你然后把我抛弃是什么歌| 天蝎座是什么象星座| 吃氨糖有什么副作用| 乙状结肠腺瘤是什么病| 魁罡贵人是什么意思| 阴沉木是什么木头| 辛味是什么味| 老年人流鼻血是什么原因| 什么海里没有鱼| 知青是什么意思| 男性囊肿是什么引起的| 垂髫是什么意思| 太上皇是什么意思| 支气管炎性改变是什么意思| 兵马未动粮草先行是什么意思| 七四年属什么生肖| 坐西向东是什么宅| 皮肤病吃什么药最好| negative什么意思| 身体水肿是什么原因引起的| 子宫增厚是什么原因| 性格好的女生是什么样| 什么能助睡眠| 百度Jump to content

[新闻袋袋裤]春暖花开三月天 游人赏花正当时

From Wikipedia, the free encyclopedia
High bypass
Low bypass
Turbojet (No air bypasses the engine)
Schematic turbofan engines. The high-bypass engine (top) has a large fan that routes much air around the turbine; the low-bypass engine (middle) has a smaller fan routing more air into the turbine; the turbojet (bottom) has zero bypass, and all air goes through the turbine.
百度 从中观来看,各个地区、各个部门、各个单位、各个组织所做的一切工作,都是为了满足人民群众的需要,满足社会的需要,服务党和国家发展的需要。

The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core.[1] A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.

Turbofan engines are usually described in terms of BPR, which together with engine pressure ratio, turbine inlet temperature and fan pressure ratio are important design parameters. In addition, BPR is quoted for turboprop and unducted fan installations because their high propulsive efficiency gives them the overall efficiency characteristics of very high bypass turbofans. This allows them to be shown together with turbofans on plots which show trends of reducing specific fuel consumption (SFC) with increasing BPR. BPR is also quoted for lift fan installations where the fan airflow is remote from the engine and doesn't physically touch the engine core.

Bypass provides a lower fuel consumption for the same thrust, measured as thrust specific fuel consumption (grams/second fuel per unit of thrust in kN using SI units). Lower fuel consumption that comes with high bypass ratios applies to turboprops, using a propeller rather than a ducted fan.[2][3][4][5] High bypass designs are the dominant type for commercial passenger aircraft and both civilian and military jet transports.

Business jets use medium BPR engines.[6]

Combat aircraft use engines with low bypass ratios to compromise between fuel economy and the requirements of combat: high power-to-weight ratios, supersonic performance, and the ability to use afterburners.

Principles

[edit]
The Rolls-Royce Trent XWB powering the Airbus A350, having its core and its bypass duct observable from this view.

If all the gas power from a gas turbine is converted to kinetic energy in a propelling nozzle, the aircraft is best suited to high supersonic speeds. If it is all transferred to a separate large mass of air with low kinetic energy, the aircraft is best suited to zero speed (hovering). For speeds in between, the gas power is shared between a separate airstream and the gas turbine's own nozzle flow in a proportion which gives the aircraft performance required. The first jet aircraft were subsonic and the poor suitability of the propelling nozzle for these speeds due to high fuel consumption was understood, and bypass proposed, as early as 1936 (U.K. Patent 471,368). The underlying principle behind bypass is trading exhaust velocity for extra mass flow which still gives the required thrust but uses less fuel. Turbojet inventor Frank Whittle called it "gearing down the flow".[7] Power is transferred from the gas generator to an extra mass of air, i.e. a larger diameter propelling jet, moving more slowly. The bypass spreads the available mechanical power across more air to reduce the velocity of the jet.[8] The trade-off between mass flow and velocity is also seen with propellers and helicopter rotors by comparing disc loading and power loading.[9] For example, the same helicopter weight can be supported by a high power engine and small diameter rotor or, for less fuel, a lower power engine and bigger rotor with lower velocity through the rotor.

Bypass usually refers to transferring gas power from a gas turbine to a bypass stream of air to reduce fuel consumption and jet noise. Alternatively, there may be a requirement for an afterburning engine where the sole requirement for bypass is to provide cooling air. This sets the lower limit for BPR and these engines have been called "leaky" or continuous bleed turbojets[10] (General Electric YJ-101 BPR 0.25) and low BPR turbojets[11] (Pratt & Whitney PW1120). Low BPR (0.2) has also been used to provide surge margin as well as afterburner cooling for the Pratt & Whitney J58.[12]

Description

[edit]
Propulsive efficiency comparison for various gas turbine engine configurations

In a zero-bypass (turbojet) engine the high temperature and high pressure exhaust gas is accelerated by expansion through a propelling nozzle and produces all the thrust. The compressor absorbs all the mechanical power produced by the turbine. In a bypass design, extra turbines drive a ducted fan that accelerates air rearward from the front of the engine. In a high-bypass design, the ducted fan and nozzle produce most of the thrust. Turbofans are closely related to turboprops in principle because both transfer some of the gas turbine's gas power, using extra machinery, to a bypass stream leaving less for the hot nozzle to convert to kinetic energy. Turbofans represent an intermediate stage between turbojets, which derive all their thrust from exhaust gases, and turbo-props which derive minimal thrust from exhaust gases (typically 10% or less).[13] Extracting shaft power and transferring it to a bypass stream introduces extra losses which are more than made up by the improved propulsive efficiency. The turboprop at its best flight speed gives significant fuel savings over a turbojet even though an extra turbine, a gearbox and a propeller were added to the turbojet's low-loss propelling nozzle.[14] The turbofan has additional losses from its extra turbines, fan, bypass duct and extra propelling nozzle compared to the turbojet's single nozzle.

To see the influence of increasing BPR alone on overall efficiency in the aircraft, i.e. SFC, a common gas generator has to be used, i.e. no change in Brayton cycle parameters or component efficiencies. Bennett[15] shows in this case a relatively slow rise in losses transferring power to the bypass at the same time as a fast drop in exhaust losses with a significant improvement in SFC. In reality increases in BPR over time come along with rises in gas generator efficiency masking, to some extent, the influence of BPR.

Only the limitations of weight and materials (e.g., the strengths and melting points of materials in the turbine) reduce the efficiency at which a turbofan gas turbine converts this thermal energy into mechanical energy, for while the exhaust gases may still have available energy to be extracted, each additional stator and turbine disk retrieves progressively less mechanical energy per unit of weight, and increasing the compression ratio of the system by adding to the compressor stage to increase overall system efficiency increases temperatures at the turbine face. Nevertheless, high-bypass engines have a high propulsive efficiency because even slightly increasing the velocity of a very large volume and consequently mass of air produces a very large change in momentum and thrust: thrust is the engine's mass flow (the amount of air flowing through the engine) multiplied by the difference between the inlet and exhaust velocities in—a linear relationship—but the kinetic energy of the exhaust is the mass flow multiplied by one-half the square of the difference in velocities.[16][17] A low disc loading (thrust per disc area) increases the aircraft's energy efficiency, and this reduces the fuel use.[18][19][20]

A high-bypass General Electric GEnx-1B powering the Boeing 787 Dreamliner, with the hot air observable flowing from the engine's core

The Rolls–Royce Conway turbofan engine, developed in the early 1950s, was an early example of a bypass engine. The configuration was similar to a 2-spool turbojet but to make it into a bypass engine it was equipped with an oversized low pressure compressor: the flow through the inner portion of the compressor blades went into the core while the outer portion of the blades blew air around the core to provide the rest of the thrust. The bypass ratio for the Conway varied between 0.3 and 0.6 depending on the variant[21]

The growth of bypass ratios during the 1960s gave jetliners fuel efficiency that could compete with that of piston-powered planes. Today (2015), most jet engines have some bypass. Modern engines in slower aircraft, such as airliners, have bypass ratios up to 12:1; in higher-speed aircraft, such as fighters, bypass ratios are much lower, around 1.5; and craft designed for speeds up to Mach 2 and somewhat above have bypass ratios below 0.5.

Turboprops have bypass ratios of 50-100,[2][3][4] although the propulsion airflow is less clearly defined for propellers than for fans[22] and propeller airflow is slower than the airflow from turbofan nozzles.[20][23]

Engine bypass ratios

[edit]
Turbofan Bypass Ratio Evolution
The GE J85 was once a very popular turbojet engine, powering major military aircraft such as the Cessna A-37 Dragonfly, Northrop F-5, and Northrop T-38 Talon.
Most contemporary jetfighters are powered by various low-bypass turbofan platforms, such as this Saturn AL-31FP powering the Sukhoi Su-30MKI , which has a BPR lower than 1.
Most business jets, regional jets, and small-sized commercial jetliners use engines with medium-to-high BPR. The in-development Safran Silvercrest is one example of this engine class.
The PW1100G series powering the Airbus A320neo family is the engine design with highest BPR available
Turbofan engines
Model First BPR Thrust Major applications
P&W PW1000G[24] 2008 9.0–12.5 67–160 kN A320neo, A220, E-Jets E2, Irkut MC-21
R-R Trent 1000 2006 10.8–11[25] 265.3–360.4 kN B787
CFM LEAP[26] 2013 9.0–11.0 100–146 kN A320neo, B737Max, Comac C919
GE GE90 1992 8.7–9.9[25] 330–510 kN B777
R-R Trent XWB 2010 9.6:1[27] 330–430 kN A350XWB
GE GEnx[28] 2006 8.0–9.3 296-339 kN B747-8, B787
EA GP7000 2004 8.7[25] 311–363 kN A380
R-R Trent 900 2004 8.7[25] 340–357 kN A380
R-R Trent 500 1999 8.5[25] 252 kN A340-500/600
GE TF39[29] 1964 8.0 Lockheed C-5 Galaxy
CFM56 1974 5.0–6.6[25] 97.9-151 kN A320, A340-200/300, B737, KC-135, DC-8
P&W PW4000 1984 4.8–6.4[25] 222–436 kN A300/A310, A330, B747, B767, B777, MD-11
GE CF34 1982 5.3–6.3[25] 41–82.3 kN Challenger 600, CRJ, E-jets
Silvercrest 2012 5.9[30] 50.9 kN Cit. Hemisphere, Falcon 5X
R-R Trent 800 1993 5.7–5.79 411–425 kN B777
GE Passport 2013 5.6[31] 78.9–84.2 kN Global 7000/8000
P&WC PW800 2012 5.5[32] 67.4–69.7 kN Gulfstream G500/G600
GE CF6 1971 4.3–5.3[25] 222–298 kN A300/A310, A330, B747, B767, MD-11, DC-10
D-36 1977 5.6[25] 63.75 kN Yak-42, An-72, An-74
R-R AE 3007 1991 5.0[25] 33.7 kN ERJ, Citation X
R-R Trent 700 1990 4.9[25] 320 kN A330
IAE V2500 1987 4.4–4.9[25] 97.9-147 kN A320, MD-90
P&W PW6000 2000 4.90[25] 100.2 kN Airbus A318
R-R BR700 1994 4.2–4.5[25] 68.9–102.3 kN B717, Global Express, Gulfstream V
P&WC PW300 1988 3.8–4.5[25] 23.4–35.6 kN Cit. Sovereign, G200, F. 7X, F. 2000
HW HTF7000 1999 4.4[25] 28.9 kN Challenger 300, G280, Legacy 500
PS-90 1992 5.4[25] 157–171 kN Il-76, Il-96, Tu-204
PowerJet SaM146 2008 4.4:1[33] 71.6–79.2 kN Sukhoi Superjet 100
Williams FJ44 1985 3.3–4.1[25] 6.7–15.6 kN CitationJet, Cit. M2
P&WC PW500 1993 3.90[25] 13.3 kN Citation Excel, Phenom 300
HW TFE731 1970 2.66–3.9[25] 15.6–22.2 kN Learjet 70/75, G150, Falcon 900
R-R Tay 1984 3.1–3.2[25] 61.6–68.5 kN Gulfstream IV, Fokker 70/100
GE-H HF120 2009 2.9[34] 7.4 kN HondaJet
P&WC PW600 2001 1.83–2.80[25] 6.0 kN Cit. Mustang, Eclipse 500, Phenom 100
GE F101[35] 1973 2.1 B-1
GE CF700[36] 1964 2.0 Falcon 20, Sabreliner 75A,
P&W JT8D-200[37] 1979 1.74 MD-80, 727 Super 27
P&W JT3D[38] 1958 1.42 707-130B, 707-320B, DC-8-50, DC-8-60
P&W JT8D[39] 1960 0.96 DC-9, 727, 737 Original
GE F110-100/400[40] 1980-1984 0.87 F-16 (-100), F-14B/D (-400)
R-R Turbomeca Adour[41] 1968 0.75-0.80 T-45, Hawk, Jaguar
GE F110-129[40] Mid-1980s 0.76 F-16, F-15EX
P&W F100-220[42] 1986 0.71 105.7 kN F-15, F-16
GE F110-132[40] 2003-2005 0.68 F-16 Blk.60
R-R Spey[43] 1964 0.64 Trident, 1-11, Gulfstream II/III, Fokker F28
P&W F135[44] 2006 0.57 191 kN F-35
Saturn AL-31[45] 0.56 Su-27, Su-30, J-10

Klimov RD-33

1974 0.49 81.3 kN MiG-29
Honeywell/ITEC F124[46] 1979 0.49 L-159, M-346
Eurojet EJ200[47] 1991 0.40 Typhoon
P&W F100-229[42] 1989 0.36 129.7 kN F-16, F-15
GE F404[48] 1978 0.34 F/A-18, T-50, F-117
R-R Conway[49] 1952 0.30 707-420, DC-8-40, VC-10, Victor
GE F414[50] 1993 0.25 F/A-18E/F
Turbojets 0.0 early jet aircraft, Concorde

See also

[edit]

References

[edit]
  1. ^ "Bypass ratio | engineering".
  2. ^ a b Ilan Kroo and Juan Alonso. "Aircraft Design: Synthesis and Analysis, Propulsion Systems: Basic Concepts Archive" Stanford University School of Engineering, Department of Aeronautics and Astronautics. Quote: "When the bypass ratio is increased to 10-20 for very efficient low speed performance, the weight and wetted area of the fan shroud (inlet) become large, and at some point it makes sense to eliminate it altogether. The fan then becomes a propeller and the engine is called a turboprop. Turboprop engines provide efficient power from low speeds up to as high as M=0.8 with bypass ratios of 50-100."
  3. ^ a b Prof. Z. S. Spakovszky. "11.5 Trends in thermal and propulsive efficiency Archive" MIT turbines, 2002. Thermodynamics and Propulsion
  4. ^ a b Nag, P.K. "Basic And Applied Thermodynamics[permanent dead link]" p550. Published by Tata McGraw-Hill Education. Quote: "If the cowl is removed from the fan the result is a turboprop engine. Turbofan and turboprop engines differ mainly in their bypass ratio 5 or 6 for turbofans and as high as 100 for turboprop."
  5. ^ Animated Engines
  6. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2025-08-05. Retrieved 2025-08-05.{{cite web}}: CS1 maint: archived copy as title (link)
  7. ^ Gas Turbine Aerodynamics, Sir Frank Whittle, Pergamon Press 1981, p.217
  8. ^ Aircraft Engine Design Second Edition, Mattingley, Heiser, Pratt, AIAA Education Series, ISBN 1-56347-538-3, p.539
  9. ^ "1964 - 2596". Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  10. ^ Jane's All The World's Aircraft 1975-1976, edited by John W.R. Taylor, Jane's Yearbooks, Paulton House, 8 Sheperdess Walk, London N1 7LW, p.748
  11. ^ Zipkin, M. A. (1984). "The PW1120: A High Performance, Low Risk F100 Derivative". Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery. doi:10.1115/84-GT-230. ISBN 978-0-7918-7947-4.
  12. ^ "Never Told Tales of Pratt & Whitney by Dr. Bob Abernethy".
  13. ^ "The turbofan engine Archived 2025-08-05 at the Wayback Machine", page 7. SRM Institute of Science and Technology, Department of aerospace engineering
  14. ^ Gas Turbine Theory Second Edition, Cohen, Rogers and Saravanamuttoo, Longmans Group Limited 1972, ISBN 0 582 44927 8, p.85
  15. ^ Aero Engine Development for the Future, H.W. Bennett, Proc Instn Mech Engrs Vol 197A, Power Industries Division, July 1983, Fig.5
  16. ^ Paul Bevilaqua : The shaft driven Lift Fan propulsion system for the Joint Strike Fighter Archived 2025-08-05 at the Wayback Machine page 3. Presented May 1, 1997. DTIC.MIL Word document, 5.5 MB. Accessed: 25 February 2012.
  17. ^ Bensen, Igor. "How they fly - Bensen explains all Archived 2025-08-05 at the Wayback Machine" Gyrocopters UK. Accessed: 10 April 2014.
  18. ^ Johnson, Wayne. Helicopter theory pp3+32, Courier Dover Publications, 1980. Accessed: 25 February 2012. ISBN 0-486-68230-7
  19. ^ Wieslaw Zenon Stepniewski, C. N. Keys. Rotary-wing aerodynamics p3, Courier Dover Publications, 1979. Accessed: 25 February 2012. ISBN 0-486-64647-5
  20. ^ a b Philip Walsh, Paul Fletcher. "Gas Turbine Performance", page 36. John Wiley & Sons, 15 April 2008. Quote: "It has better fuel consumption than a turbojet or turbofan, due to a high propulsive efficiency.., achieving thrust by a high mass flow of air from the propeller at low jet velocity. Above 0.6 Mach number the turboprop in turn becomes uncompetitive, due mainly to higher weight and frontal area."
  21. ^ "Rolls-Royce Aero Engines" Bill Gunston, Patrick Stevens Limited, ISBN 1-85260-037-3, p.147
  22. ^ "Propeller thrust Archived 2025-08-05 at the Wayback Machine" Glenn Research Center (NASA)
  23. ^ "Turboprop Engine Archived 2025-08-05 at the Wayback Machine" Glenn Research Center (NASA)
  24. ^ "PW1000G". MTU. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  25. ^ a b c d e f g h i j k l m n o p q r s t u v w Jane's All the World's Aircraft. 2005. pp. 850–853. ISSN 0075-3017.
  26. ^ "The Leap Engine". CFM International.
  27. ^ "Trent-XWB infographic" (PDF). Rolls-Royce. May 2017.
  28. ^ "GEnx". GE.
  29. ^ "50 years ago: GE roars back into the airline industry". General Electric.
  30. ^ "Silvercrest 2D for the Dassault Aviation Falcon 5X". Safran Aircraft Engines.
  31. ^ "type certificate data sheet E00091EN, revision 0" (PDF). FAA. 29 April 2016. Archived from the original (PDF) on 15 November 2016. Retrieved 23 May 2023.
  32. ^ Fred George (Nov 1, 2014). "Gulfstream Unveils G500 and G600". Business & Commercial Aviation. Aviation Week.
  33. ^ "SaM146 | PowerJet". www.powerjet.aero. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  34. ^ "HF120 Turbofan Engine". Honda Worldwide. Retrieved September 29, 2017.
  35. ^ "General Electric F101". global security.
  36. ^ "General Electric CF700-2D-2". aircraft-database.
  37. ^ "Pratt & Whitney JT8D-200". MTU Aero Engines.
  38. ^ "Pratt & Whitney JT3D-3B". aircraft-database.
  39. ^ "Pratt & Whitney JT8D / Volvo RM8". all-aero.
  40. ^ a b c "General Electric F110". MTU Aero Engines.
  41. ^ "Adour Uninstalled Engine Test Facility". thermofluids.co.
  42. ^ a b "Pratt & Whitney F100". Purdue University.
  43. ^ "Rolls-Royce Spey". all-aero.
  44. ^ "Pratt & Whitney F135". worldwide-military.
  45. ^ "Saturn AL-31". United Engine Corporation.
  46. ^ "Honeywell F124". militaryleak.
  47. ^ "Eurojet EJ200". MTU Aero Engines.
  48. ^ "General Electric F404". Purdue University.
  49. ^ "Rolls-Royce Conway". Shannon Aviation Museum.
  50. ^ "General Electric F414". MTU Aero Engines.
更年期补钙吃什么钙片好 水瓶是什么星座 睡眠障碍应该挂什么科室 3月28日什么星座 感冒喝什么药
sheep是什么意思 厚植是什么意思 百合什么时候开花 女人是什么意思 焦虑症是什么症状
浇去掉三点水读什么 宝石蓝配什么颜色好看 晚上夜尿多是什么原因 痤疮用什么药 豆花是什么
灵五行属性是什么 lily是什么牌子 肠胃炎有什么症状 养狗人容易得什么病 阴茎冰凉是什么原因
noa是什么意思hcv9jop3ns2r.cn prn是什么医嘱hcv9jop5ns1r.cn 南瓜不能和什么食物一起吃hcv8jop8ns2r.cn 三天打鱼两天晒网什么意思hcv8jop8ns6r.cn 什么叫女人味hcv8jop2ns5r.cn
什么的生活hcv7jop4ns5r.cn 医院为什么禁止小孩灌肠hcv7jop6ns8r.cn 联字五行属什么wuhaiwuya.com 马蹄是什么hcv9jop3ns8r.cn 头七有什么规矩hcv9jop4ns5r.cn
身份证号码的数字代表什么意义hcv9jop2ns9r.cn 贺涵为什么会爱上罗子君hcv8jop7ns2r.cn 什么是偏光眼镜hcv9jop1ns3r.cn 上海话册那什么意思hcv9jop8ns3r.cn 下眼袋发青是什么原因hcv8jop1ns2r.cn
颈动脉在什么位置hcv9jop7ns0r.cn 浮粉是什么原因引起的fenrenren.com 寿司的米饭是什么米hcv8jop5ns6r.cn 腋下淋巴结肿大挂什么科hcv7jop6ns3r.cn 脖子上长扁平疣是什么原因hcv8jop8ns2r.cn
百度