hitachi是什么品牌| 属鸡的女生和什么属相最配| 什么情况下必须做胃镜| 丹宁蓝是什么颜色| 身体缺钠会有什么症状| 八四年属什么生肖| 拔牙后吃什么药| 上身胖下身瘦是什么原因| 月加亏念什么| 癃闭什么意思| 即兴表演是什么意思| 仙逝是什么意思| 干净的反义词是什么| 启五行属什么| 抑郁症是什么症状| 属鼠女和什么属相最配| 梦见车丢了是什么征兆| burberry是什么品牌| 女生腰疼是什么原因| 桜什么意思| 黄金有什么用| 肠胃不舒服吃什么药| 胃病能吃什么水果| 黑眼袋是什么原因引起的| 亚麻籽是什么植物| 海灵菇是什么| 班别是什么意思| 月光族是什么意思啊| 铁皮石斛有什么作用| 梅菜扣肉的梅菜是什么菜| 搬新家有什么讲究和准备的| 早上8点是什么时辰| 人乳头病毒是什么意思| 痔疮吃什么药好得快| 颈动脉斑块吃什么药效果最好| 为什么小腹总是胀痛| 乡镇派出所所长是什么级别| 手掌发热是什么原因| 近亲结婚生的孩子会得什么病| 备孕需要注意些什么| 36计第一计是什么| 嗓子中间的那块小肉叫什么| 为什么加油站不能打电话| 禅茶一味什么意思| 窦炎症是什么病| 送羊是什么意思| 880什么意思| 脸部痒是什么原因| 2月20号是什么星座| 排卵期在什么时候| 护士节送什么花| 苑字五行属什么| 小s和黄子佼为什么分手| 胃胀疼是什么原因| 天秤座是什么性格| 为什么做b超要憋尿| 脸上长斑是因为什么原因引起的| 拔罐对身体有什么好处和坏处| 同房子宫疼痛什么原因| 挪车打什么电话| 楼梯步数有什么讲究| 盐碱地适合种什么农作物| 阳光照耀是什么意思| 心肌缺血吃什么补得快| 汗为什么是咸的| 2012年是什么命| 蝉联是什么意思| 艾字五行属什么| 指甲油用什么能洗掉| 什么鸡没有翅膀| 盐酸氟桂利嗪胶囊治什么病| 快乐源泉是什么意思| 夏至为什么吃馄饨| 大小周是什么意思| 珅是什么意思| 健康证检查什么| 被和谐了是什么意思| 为什么突然就得肝炎了| 孩子血铅高有什么症状| 冠状动脉粥样硬化性心脏病吃什么药| 头发老是出油是什么原因| adidas是什么品牌| notebook什么意思| 7月1日什么节日| 汉尼拔是什么意思| 翻来覆去是什么意思| 百什么争什么| 男士脸黑用什么能美白| 爱做梦是什么原因应该怎样调理| 为什么医者不自医| 摆渡人是什么意思| 什么降血压效果最好| 糖尿病人适合喝什么茶| 肝内钙化灶是什么意思| 城隍庙求什么最灵| 嘴唇上长痘是什么原因| 舌头有黑点是什么原因| 意字五行属什么| 殿后和垫后有什么区别| 反复口腔溃疡是什么原因| 火旺是什么意思| 动不动就出汗是什么原因| 孕妇地中海贫血对胎儿有什么影响| 桂枝茯苓丸治什么病| 手癣用什么药| 近视吃什么改善视力| 什么叫业障| 为什么心里总想一个人| 9月3号是什么星座| 六月五行属什么| 烧钱是什么意思| bpm是什么| 菡字五行属什么| 腺体肠化是什么意思| 飞机什么时候开始登机| 蛇胆疮是什么原因引起的| 臆想症是什么病| 松针土适合种什么花| 什么食物热量低| 府绸是什么面料| 什么叫支原体感染| 红玫瑰的花语是什么| 衣原体感染是什么意思| 专政是什么意思| 手术后吃什么最有营养| 半夜十二点是什么时辰| 呼吸内科主要看什么病| 辽国是现在的什么地方| 马天宇是什么民族| 父亲节送什么好| 吃的多拉的少是什么原因| 早期胃癌有什么症状| 吃什么对肺有好处| 张国荣什么时候去世的| 不经意间是什么意思| 空调嗡嗡响是什么原因| 新加坡属于什么气候| 什么手机像素最高| 天涯海角是什么生肖| 绿豆汤有什么功效| 惊雷是什么意思| 什么充电宝能带上飞机| pck是什么意思| 龟龄集适合什么人吃| 山楂干泡水喝有什么功效和作用| 王毅是什么级别| 梦到孩子死了是什么征兆| 食指发麻是什么原因| 上火吃什么可以降火| 信天翁是什么鸟| ocg是什么意思| 凉面是用什么面做的| 四次元是什么意思| 前列腺增大伴钙化灶是什么意思| 读书的意义是什么| 艾滋病简称什么| 封心锁爱什么意思| 什么是个体工商户| 犟驴是什么意思| 绿五行属什么| 什么叫玄学| 小孩测骨龄挂什么科| 1月24号什么星座| 脚肿是什么原因造成的| 满血复活是什么意思| hardly什么意思| 做包皮手术有什么好处| 年兽叫什么| 屎是黑色的是什么原因| 脚指甲发白是什么原因| 脚二拇指比大拇指长代表什么| 肛瘘是什么症状表现| 绿豆和什么不能一起吃| 高代表什么生肖| 为什么长疣| 没什么大不了的| 肠梗阻是什么原因引起的| 一什么水塔| 面部提升紧致做什么效果最好| 为什么说白痰要人命| 干邑是什么意思| 沉香是什么东西| 举什么什么举| aoc是什么牌子| 手抖挂什么科| 绕梁三日是什么意思| 马中赤兔人中吕布什么意思| 来月经吃什么水果| ab血型和o型生的孩子是什么血型| 为什么会便血| 鸡属相和什么属相最配| 鸡眼长什么样子图片| 仁慈是什么意思| 减肥期间可以喝什么茶| 人发胖的原因是什么引起的| 什么是牛黄| cm2是什么单位| 科技馆里面有什么| mido手表什么档次| 肠粉是用什么材料做的| 丑是什么生肖| 脂肪肝吃什么水果好| 开心水是什么| 50岁眼睛模糊吃什么好| 奇门遁甲是什么意思| yuri是什么意思| 越睡越困是什么原因| 惊蛰后是什么节气| sport什么品牌| 皮肤起水泡发痒是什么病| 西洋参泡水喝有什么功效| 乳糖不耐受吃什么奶粉| 助理研究员是什么职称| 两肺纤维灶是什么意思| 图灵是什么意思| 蛇蛋是什么样子的| 股票杠杆是什么意思| 高三学生吃什么补脑抗疲劳| 10月24是什么星座| 牙齿疼是什么原因| max什么意思| 膀胱过度活动症是什么原因引起的| 刘邦为什么怕吕后| 自限性疾病是什么意思| 非淋菌尿道炎用什么药| 牙龈发炎吃什么药| 女人绝经后靠什么排毒| 狐臭什么味| 美丽的邂逅是什么意思| ufo是什么| 什么是工科| 介入超声是什么意思| 苏打水配什么好喝| 崩漏是什么意思| 女人吃猪肝有什么好处| 什么原因会导致月经推迟| 血糖忽高忽低是什么原因| 一什么牛奶| 节制的意思是什么| 膝关节积液是什么原因造成的| 什么的睡觉| 有什么汤菜谱大全| 动物奶油是什么做的| 地板油是什么意思| 同型半胱氨酸高挂什么科| 什么给我带来快乐| 南昌有什么好玩的景点| 日久生情什么意思| 洁面慕斯和洗面奶有什么区别| 白手起家是什么意思| 为什么老是掉头发特别厉害| 与生俱来是什么意思| 白酒配什么饮料好喝| 1月18是什么星座| 喝完酒胃疼吃什么药| 车震是什么意思| 摆渡是什么意思| 腰椎钙化是什么意思| 什么情况属于骗婚| 甲状腺手术后可以吃什么水果| 摩西摩西是什么意思| 桔梗是什么东西| 课代表是什么意思| 0点是什么时辰| 百度Jump to content

大师用车|路虎揽胜领衔上海车展 豪车配套用品

From Wikipedia, the free encyclopedia
This is the current revision of this page, as edited by Fgnievinski (talk | contribs) at 18:35, 24 July 2025 (References). The present address (URL) is a permanent link to this version.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Solid angle
Visual representation of a solid angle
Common symbols
Ω
SI unitsteradian
Other units
Square degree, spat (angular unit)
In SI base unitsm2/m2
Conserved?No
Derivations from
other quantities
Dimension
百度 机关党组织要真正强起来,配强机关党组织负责人,配齐工作人员,创新思路举措,改进方式方法,完善制度机制,切实履行好协助、推进、教育、监督和引领责任,全面提升机关党建工作绩效。

In geometry, a solid angle (symbol: Ω) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

In the International System of Units (SI), a solid angle is expressed in a dimensionless unit called a steradian (symbol: sr), which is equal to one square radian, sr = rad2. One steradian corresponds to one unit of area (of any shape) on the unit sphere surrounding the apex, so an object that blocks all rays from the apex would cover a number of steradians equal to the total surface area of the unit sphere, . Solid angles can also be measured in squares of angular measures such as degrees, minutes, and seconds.

A small object nearby may subtend the same solid angle as a larger object farther away. For example, although the Moon is much smaller than the Sun, it is also much closer to Earth. Indeed, as viewed from any point on Earth, both objects have approximately the same solid angle (and therefore apparent size). This is evident during a solar eclipse.

Definition and properties

[edit]

The magnitude of an object's solid angle in steradians is equal to the area of the segment of a unit sphere, centered at the apex, that the object covers. Giving the area of a segment of a unit sphere in steradians is analogous to giving the length of an arc of a unit circle in radians. Just as the magnitude of a plane angle in radians at the vertex of a circular sector is the ratio of the length of its arc to its radius, the magnitude of a solid angle in steradians is the ratio of the area covered on a sphere by an object to the square of the radius of the sphere. The formula for the magnitude of the solid angle in steradians is

where is the area (of any shape) on the surface of the sphere and is the radius of the sphere.

Solid angles are often used in astronomy, physics, and in particular astrophysics. The solid angle of an object that is very far away is roughly proportional to the ratio of area to squared distance. Here "area" means the area of the object when projected along the viewing direction.

Any area on a sphere which is equal in area to the square of its radius, when observed from its center, subtends precisely one steradian.

The solid angle of a sphere measured from any point in its interior is 4π sr. The solid angle subtended at the center of a cube by one of its faces is one-sixth of that, or 2π/3  sr. The solid angle subtended at the corner of a cube (an octant) or spanned by a spherical octant is π/2  sr, one-eighth of the solid angle of a sphere.

Solid angles can also be measured in square degrees (1 sr = (180/π)2 square degrees), in square arc-minutes and square arc-seconds.[a] It can also be expressed in fractions of the sphere (1 sr = ?1/4π? fractional area), also known as spat (1 sp = 4π sr).

In spherical coordinates there is a formula for the differential,

where θ is the colatitude (angle from the North Pole) and φ is the longitude.

The solid angle for an arbitrary oriented surface S subtended at a point P is equal to the solid angle of the projection of the surface S to the unit sphere with center P, which can be calculated as the surface integral:

where is the unit vector corresponding to , the position vector of an infinitesimal area of surface dS with respect to point P, and where represents the unit normal vector to dS. Even if the projection on the unit sphere to the surface S is not isomorphic, the multiple folds are correctly considered according to the surface orientation described by the sign of the scalar product .

Thus one can approximate the solid angle subtended by a small facet having flat surface area dS, orientation , and distance r from the viewer as:

where the surface area of a sphere is A = 4πr2.

Practical applications

[edit]

Solid angles for common objects

[edit]

Cone, spherical cap, hemisphere

[edit]
Diagram showing a section through the centre of a cone (1) subtending a solid angle of 1 steradian in a sphere of radius r, along with the spherical "cap" (2). The external surface area A of the cap equals only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A/2 and r = 1.

The solid angle of a cone with its apex at the apex of the solid angle, and with apex angle 2θ, is the area of a spherical cap on a unit sphere

For small θ such that cos θ ≈ 1 ? ?θ2/2? this reduces to πθ2 ≈ πr2, the area of a circle. (As h → 0, θ → r.)

The above is found by computing the following double integral using the unit surface element in spherical coordinates:

This formula can also be derived without the use of calculus.

Over 2200 years ago Archimedes proved that the surface area of a spherical cap is always equal to the area of a circle whose radius equals the distance from the rim of the spherical cap to the point where the cap's axis of symmetry intersects the cap.[2]

Archimedes' theorem that surface area of the region of sphere below horizontal plane H in given diagram is equal to area of a circle of radius t.

In the above coloured diagram this radius is given as

In the adjacent black & white diagram this radius is given as "t".

Hence for a unit sphere the solid angle of the spherical cap is given as

When θ = ?π/2?, the spherical cap becomes a hemisphere having a solid angle 2π.

The solid angle of the complement of the cone is

This is also the solid angle of the part of the celestial sphere that an astronomical observer positioned at latitude θ can see as the Earth rotates. At the equator all of the celestial sphere is visible; at either pole, only one half.

The solid angle subtended by a segment of a spherical cap cut by a plane at angle γ from the cone's axis and passing through the cone's apex can be calculated by the formula[3]

For example, if γ = ?θ, then the formula reduces to the spherical cap formula above: the first term becomes π, and the second π cos θ.

Tetrahedron

[edit]

Let OABC be the vertices of a tetrahedron with an origin at O subtended by the triangular face ABC where are the vector positions of the vertices A, B and C. Define the vertex angle θa to be the angle BOC and define θb, θc correspondingly. Let be the dihedral angle between the planes that contain the tetrahedral faces OAC and OBC and define , correspondingly. The solid angle Ω subtended by the triangular surface ABC is given by

This follows from the theory of spherical excess and it leads to the fact that there is an analogous theorem to the theorem that "The sum of internal angles of a planar triangle is equal to π", for the sum of the four internal solid angles of a tetrahedron as follows:

where ranges over all six of the dihedral angles between any two planes that contain the tetrahedral faces OAB, OAC, OBC and ABC.[4]

A useful formula for calculating the solid angle of the tetrahedron at the origin O that is purely a function of the vertex angles θa, θb, θc is given by L'Huilier's theorem[5][6] as

where

Another interesting formula involves expressing the vertices as vectors in 3 dimensional space. Let be the vector positions of the vertices A, B and C, and let a, b, and c be the magnitude of each vector (the origin-point distance). The solid angle Ω subtended by the triangular surface ABC is:[7][8]

where

denotes the scalar triple product of the three vectors and denotes the scalar product.

Care must be taken here to avoid negative or incorrect solid angles. One source of potential errors is that the scalar triple product can be negative if a, b, c have the wrong winding. Computing the absolute value is a sufficient solution since no other portion of the equation depends on the winding. The other pitfall arises when the scalar triple product is positive but the divisor is negative. In this case returns a negative value that must be increased by π.

Pyramid

[edit]

The solid angle of a four-sided right rectangular pyramid with apex angles a and b (dihedral angles measured to the opposite side faces of the pyramid) is

If both the side lengths (α and β) of the base of the pyramid and the distance (d) from the center of the base rectangle to the apex of the pyramid (the center of the sphere) are known, then the above equation can be manipulated to give

The solid angle of a right n-gonal pyramid, where the pyramid base is a regular n-sided polygon of circumradius r, with a pyramid height h is

The solid angle of an arbitrary pyramid with an n-sided base defined by the sequence of unit vectors representing edges {s1, s2}, ... sn can be efficiently computed by:[3]

where parentheses (* *) is a scalar product and square brackets [* * *] is a scalar triple product, and i is an imaginary unit. Indices are cycled: s0 = sn and s1 = sn + 1. The complex products add the phase associated with each vertex angle of the polygon. However, a multiple of is lost in the branch cut of and must be kept track of separately. Also, the running product of complex phases must scaled occasionally to avoid underflow in the limit of nearly parallel segments.

Latitude-longitude rectangle

[edit]

The solid angle of a latitude-longitude rectangle on a globe is where φN and φS are north and south lines of latitude (measured from the equator in radians with angle increasing northward), and θE and θW are east and west lines of longitude (where the angle in radians increases eastward).[9] Mathematically, this represents an arc of angle ?N ? ?S swept around a sphere by θE ? θW radians. When longitude spans 2π radians and latitude spans π radians, the solid angle is that of a sphere.

A latitude-longitude rectangle should not be confused with the solid angle of a rectangular pyramid. All four sides of a rectangular pyramid intersect the sphere's surface in great circle arcs. With a latitude-longitude rectangle, only lines of longitude are great circle arcs; lines of latitude are not.

Celestial objects

[edit]

By using the definition of angular diameter, the formula for the solid angle of a celestial object can be defined in terms of the radius of the object, , and the distance from the observer to the object, :

By inputting the appropriate average values for the Sun and the Moon (in relation to Earth), the average solid angle of the Sun is 6.794×10?5 steradians and the average solid angle of the Moon is 6.418×10?5 steradians. In terms of the total celestial sphere, the Sun and the Moon subtend average fractional areas of 0.0005406% (5.406 ppm) and 0.0005107% (5.107 ppm), respectively. As these solid angles are about the same size, the Moon can cause both total and annular solar eclipses depending on the distance between the Earth and the Moon during the eclipse.

Solid angles in arbitrary dimensions

[edit]

The solid angle subtended by the complete (d ? 1)-dimensional spherical surface of the unit sphere in d-dimensional Euclidean space can be defined in any number of dimensions d. One often needs this solid angle factor in calculations with spherical symmetry. It is given by the formula where Γ is the gamma function. When d is an integer, the gamma function can be computed explicitly.[10] It follows that

This gives the expected results of 4π steradians for the 3D sphere bounded by a surface of area r2 and 2π radians for the 2D circle bounded by a circumference of length r. It also gives the slightly less obvious 2 for the 1D case, in which the origin-centered 1D "sphere" is the interval [?r, r] and this is bounded by two limiting points.

The counterpart to the vector formula in arbitrary dimension was derived by Aomoto[11][12] and independently by Ribando.[13] It expresses them as an infinite multivariate Taylor series: Given d unit vectors defining the angle, let V denote the matrix formed by combining them so the ith column is , and . The variables form a multivariable . For a "congruent" integer multiexponent define . Note that here = non-negative integers, or natural numbers beginning with 0. The notation for means the variable , similarly for the exponents . Hence, the term means the sum over all terms in in which l appears as either the first or second index. Where this series converges, it converges to the solid angle defined by the vectors.

Notes

[edit]
  1. ^ The whole sphere contains ~148.510 million square arcminutes and ~534.638 billion square arcseconds.[citation needed]

References

[edit]
  1. ^ Falla, Romain (2023). "Mesh adaption for two-dimensional bounded and free-surface flows with the particle finite element method". Computational Particle Mechanics. 10 (5): 1049–1076. doi:10.1007/s40571-022-00541-2.
  2. ^ "Archimedes on Spheres and Cylinders". Math Pages. 2015.
  3. ^ a b Mazonka, Oleg (2012). "Solid Angle of Conical Surfaces, Polyhedral Cones, and Intersecting Spherical Caps". arXiv:1205.1396 [math.MG].
  4. ^ Hopf, Heinz (1940). "Selected Chapters of Geometry" (PDF). ETH Zurich: 1–2. Archived (PDF) from the original on 2025-08-06.
  5. ^ "L'Huilier's Theorem – from Wolfram MathWorld". Mathworld.wolfram.com. 2025-08-06. Retrieved 2025-08-06.
  6. ^ "Spherical Excess – from Wolfram MathWorld". Mathworld.wolfram.com. 2025-08-06. Retrieved 2025-08-06.
  7. ^ Eriksson, Folke (1990). "On the measure of solid angles". Mathematics Magazine. 63 (3): 184–187. doi:10.2307/2691141. JSTOR 2691141.
  8. ^ Van Oosterom, A; Strackee, J (1983). "The Solid Angle of a Plane Triangle". IEEE Transactions on Biomedical Engineering. BME-30 (2): 125–126. doi:10.1109/TBME.1983.325207. PMID 6832789.
  9. ^ "Area of a Latitude-Longitude Rectangle". The Math Forum @ Drexel. 2003.
  10. ^ Jackson, FM (1993). "Polytopes in Euclidean n-space". Bulletin of the Institute of Mathematics and Its Applications. 29 (11/12): 172–174.
  11. ^ Aomoto, Kazuhiko (1977). "Analytic structure of Schl?fli function". Nagoya Math. J. 68: 1–16. doi:10.1017/s0027763000017839.
  12. ^ Beck, M.; Robins, S.; Sam, S. V. (2010). "Positivity theorems for solid-angle polynomials". Contributions to Algebra and Geometry. 51 (2): 493–507. arXiv:0906.4031.
  13. ^ Ribando, Jason M. (2006). "Measuring Solid Angles Beyond Dimension Three". Discrete & Computational Geometry. 36 (3): 479–487. doi:10.1007/s00454-006-1253-4.

Further reading

[edit]
  • Jaffey, A. H. (1954). "Solid angle subtended by a circular aperture at point and spread sources: formulas and some tables". Rev. Sci. Instrum. 25 (4): 349–354. doi:10.1063/1.1771061.
  • Masket, A. Victor (1957). "Solid angle contour integrals, series, and tables". Rev. Sci. Instrum. 28 (3): 191. doi:10.1063/1.1746479.
  • Naito, Minoru (1957). "A method of calculating the solid angle subtended by a circular aperture". J. Phys. Soc. Jpn. 12 (10): 1122–1129. doi:10.1143/JPSJ.12.1122.
  • Paxton, F. (1959). "Solid angle calculation for a circular disk". Rev. Sci. Instrum. 30 (4): 254. doi:10.1063/1.1716590.
  • Khadjavi, A. (1968). "Calculation of solid angle subtended by rectangular apertures". J. Opt. Soc. Am. 58 (10): 1417–1418. doi:10.1364/JOSA.58.001417.
  • Gardner, R. P.; Carnesale, A. (1969). "The solid angle subtended at a point by a circular disk". Nucl. Instrum. Methods. 73 (2): 228–230. doi:10.1016/0029-554X(69)90214-6.
  • Gardner, R. P.; Verghese, K. (1971). "On the solid angle subtended by a circular disk". Nucl. Instrum. Methods. 93 (1): 163–167. doi:10.1016/0029-554X(71)90155-8.
  • Gotoh, H.; Yagi, H. (1971). "Solid angle subtended by a rectangular slit". Nucl. Instrum. Methods. 96 (3): 485–486. doi:10.1016/0029-554X(71)90624-0.
  • Cook, J. (1980). "Solid angle subtended by a two rectangles". Nucl. Instrum. Methods. 178 (2–3): 561–564. doi:10.1016/0029-554X(80)90838-1.
  • Asvestas, John S..; Englund, David C. (1994). "Computing the solid angle subtended by a planar figure". Opt. Eng. 33 (12): 4055–4059. doi:10.1117/12.183402. Erratum ibid. vol 50 (2011) page 059801.
  • Tryka, Stanislaw (1997). "Angular distribution of the solid angle at a point subtended by a circular disk". Opt. Commun. 137 (4–6): 317–333. doi:10.1016/S0030-4018(96)00789-4.
  • Prata, M. J. (2004). "Analytical calculation of the solid angle subtended by a circular disc detector at a point cosine source". Nucl. Instrum. Methods Phys. Res. A. 521 (2–3): 576. arXiv:math-ph/0305034. doi:10.1016/j.nima.2003.10.098.
  • Timus, D. M.; Prata, M. J.; Kalla, S. L.; Abbas, M. I.; Oner, F.; Galiano, E. (2007). "Some further analytical results on the solid angle subtended at a point by a circular disk using elliptic integrals". Nucl. Instrum. Methods Phys. Res. A. 580: 149–152. doi:10.1016/j.nima.2007.05.055.
[edit]
  • Arthur P. Norton, A Star Atlas, Gall and Inglis, Edinburgh, 1969.
  • M. G. Kendall, A Course in the Geometry of N Dimensions, No. 8 of Griffin's Statistical Monographs & Courses, ed. M. G. Kendall, Charles Griffin & Co. Ltd, London, 1961
  • Weisstein, Eric W. "Solid Angle". MathWorld.
什么原因引起高血压 知我者非你也什么意思 怀孕初期需要注意什么 赴汤蹈火什么意思 3个火读什么
13年是什么年 取环需要做什么检查 7月30日什么星座 补钙吃什么维生素 正名是什么意思
上海有什么烟 什么一色 决堤什么意思 短发适合什么脸型 真菌性外耳道炎用什么药
为什么喝酒 西安有什么山 做梦梦到钱是什么预兆 宫颈囊肿是什么原因 挑拨离间是什么意思
静脉曲张是什么引起的adwl56.com 承你吉言是什么意思hcv9jop3ns3r.cn revive是什么意思wmyky.com 撇嘴是什么意思hcv7jop9ns9r.cn 舌头上有黑苔是什么原因hcv8jop2ns4r.cn
痰多是什么原因引起的hcv9jop1ns9r.cn 空腹不能吃什么hcv9jop3ns9r.cn 里急后重是什么意思hebeidezhi.com 左旋延胡索乙素是什么hcv7jop5ns0r.cn 4月11号是什么星座hcv8jop7ns9r.cn
梦见蚯蚓是什么预兆hcv9jop0ns5r.cn 7o年属什么生肖hcv9jop6ns3r.cn 不苟言笑的苟是什么意思hcv8jop5ns4r.cn 总做梦是什么原因hcv7jop6ns4r.cn 尿酸高吃什么好hcv7jop4ns5r.cn
左侧卵巢显示不清是什么意思hcv9jop5ns0r.cn 小儿急性喉炎吃什么药ff14chat.com ts是什么品牌kuyehao.com 脂肪滴是什么意思xscnpatent.com 嘉字属于五行属什么hcv8jop5ns0r.cn
百度