血管痉挛是什么原因引起的| 静心是什么意思| 小肠火吃什么药效果快| 乘晕宁又叫什么| 看病人买什么水果| 血压为什么晚上高| 龙涎香是什么味道| 缅怀什么意思| 阿奇霉素主治什么病| 黄芪什么季节喝最好| 阅历是什么意思| 秦始皇原名叫什么| 人工周期是什么意思| 吃什么能提神不打瞌睡| 无助是什么意思| 突然高血压是什么原因引起的| 舞是什么结构| 心衰吃什么药| 结石能喝什么茶| 衡水老白干是什么香型| 什么中药补气血效果最好| hbv是什么病毒| 孟德是什么意思| 天麻起什么作用| 后会无期什么意思| 0z是什么单位| 吃什么补白细胞效果最好| 红花泡水喝有什么功效| 五脏是什么| 月亮是什么颜色| 什么是敏感肌| 养胃早餐吃什么好| nos是什么意思| 做胃镜有什么好处| 孕妇鼻子出血是什么原因| 碧池是什么意思| 什么颜色加什么颜色等于紫色| 谷维素治什么病| 白蜡金命五行缺什么| 茗字五行属什么| 眩晕症挂什么科| cra是什么| imax是什么意思| 什么鱼蛋白质含量高| 经辐照是什么意思| 小孩睡觉说梦话是什么原因| eason是什么意思| 男人喝劲酒有什么好处| 九月什么星座| 亚临床甲亢是什么意思| 坐骨神经痛吃什么药好得快| surprise是什么意思| 属蛇的人适合佩戴什么| 四月二十八什么星座| 拔萝卜是什么意思| 什么洗面奶好用| 膝盖窝疼是什么原因| 女性长期便秘挂什么科| 致五行属什么| 伤官女是什么意思| 敌是什么生肖| 菊花可以和什么一起泡水喝| 何首乌长什么样子| 疖子是什么| 18度穿什么衣服合适| 仓鼠咬笼子是什么原因| 拔罐有什么好处和坏处| 湿疹是由什么引起的| 梦见好多鱼是什么意思| 小缺血灶是什么意思| 梦见知了猴是什么意思| 性激素六项什么时候检查| 石榴什么时候成熟| 去医院打耳洞挂什么科| 飞机上可以带什么吃的| 中国什么时候打仗| 喝醉是什么感觉| 七月一号是什么节| 最里面的牙齿叫什么牙| 发配是什么意思| 肾精亏虚吃什么药最好| 晰字五行属什么| 走路摔跤是什么征兆| 输卵管不通有什么症状| 鬼最怕什么颜色| 茶叶含有什么成分| 驾驶证体检挂什么科| 胃疼吃什么药好得最快最有效| 什么食物含钾高| 秀才指什么生肖| 心血管堵塞吃什么好| 脉压差小是什么原因| 轻微手足口病吃什么药| 拉肚子拉稀是什么原因| 吃了虾不能吃什么| 18kgp是什么意思| po医学上是什么意思| 蚊子喜欢咬什么血型| 吃什么不掉头发| 梦见水是什么意思| 三氧化硫常温下是什么状态| 早上9点多是什么时辰| 正常人吃叶酸有什么好处| 青椒炒什么好吃| hrd是什么职位| 胃溃疡可以吃什么水果| 短杆菌是什么意思| 东南大学什么专业最牛| 六月初二是什么日子| 居酒屋是什么意思| 性出血是什么原因造成的呢要怎么办| 肝左叶囊性灶什么意思| 头上长疙瘩是什么原因| 美业是什么行业| 丢包率是什么意思| 贵人相助是什么意思| 同人小说是什么意思| 脚脱皮用什么药膏| 梦见梯子是什么意思| mf是什么| 食欲不振吃什么药| 玉米什么时候成熟| 12岁生日有什么讲究| 连云港有什么特产| 慢性支气管炎吃什么药好| 血压低吃什么补得快| 铁是补什么的| 非油炸是什么意思| 植物纤维是什么面料| 意味深长是什么意思| 大枣吃多了有什么危害| 腔梗是什么病| 烂嘴是什么原因| 圣母什么意思| pr医学上是什么意思| 脚后跟痒是什么原因| 梦游是什么意思| 心脏不舒服有什么症状| 吃什么可以生发| 官官相护是什么意思| 胃体息肉是什么意思| 什么水果可以泡酒| 血糖高吃什么水果好| 湿疹是因为什么原因引起的| 老虎菜为什么叫老虎菜| 711是什么星座| 使婢差奴过一生是什么意思| 梦见包饺子是什么征兆| 烟火是什么意思| 血型b型rh阳性是什么意思| 眼底充血是什么原因| 天时地利人和什么意思| 扁平疣用什么药膏除根| 阑尾炎是什么病| 淋巴结有血流信号预示着什么| 母鸡什么意思| 1981属什么| 盍是什么意思| 六月份生日是什么星座| 工作效率等于什么| 胆囊炎有什么症状| 豌豆的什么不能吃| 怀孕养猫对胎儿有什么影响| 尼特族是什么意思| 多囊有什么危害| 布谷鸟叫有什么征兆| 高干是什么意思| 手发胀是什么原因| 鬼迷心窍什么意思| beer是什么意思| 艾滋病的症状是什么| 吃了避孕药有什么副作用| 双手麻是什么原因| 黄飞鸿代表什么生肖| s925是什么意思| 农历八月是什么月| 甲醛是什么气味| 女性内分泌失调有什么症状| 皮肤长癣是什么原因引起的| 维生素什么时候吃效果最好| 牙套什么材质的好| 仟字五行属什么| 向日葵什么时候播种| 斗米恩升米仇什么意思| 南瓜和什么不能一起吃| 唇珠在面相中代表什么| 为什么乳头会变黑| oioi是什么牌子| 靶向药是什么药| 抗炎是什么意思| n什么意思| 坐骨神经痛吃什么药好| 吃什么会变丑脑筋急转弯| 感冒发烧吃什么水果| 一个火一个旦读什么字| 梅毒单阳性是什么意思| 汉堡是什么意思| 什么样的山| 梦见洗头是什么预兆| a1代表什么意思| 补脑吃什么最好| 玉竹有什么功效| 痔疮是什么意思| 陛下的陛是什么意思| 音爆是什么| 莲雾什么味道| 算了吧什么意思| 什么吹风机好用| 天秤座属于什么星象| 金字旁加匀念什么| 虎的偏旁是什么| 色氨酸是什么| 糯米粉做什么好吃| 口嫌体正直什么意思| 龟头炎挂什么科| 皮囊炎用什么药膏| 园五行属什么| 男人的魅力是什么| 肚脐眼臭是什么原因| 西地那非是什么| 揭榜是什么意思| 吃什么不容易怀孕| 手脚麻是什么原因| 肺肿瘤有什么症状| 月经期间喝酒会有什么影响| 低血钾有什么症状| 头疼头晕挂什么科| 天使长什么样| 内推是什么意思| 撇嘴表情什么意思| 豌豆什么时候种最好| 珍珠是什么做的| 五行海中金是什么意思| 嘴里发酸是什么原因| 排卵的时候有什么症状| 幽门螺旋杆菌的症状是什么| 去医院要带什么| 什么东西化痰效果最好最快| 大量出汗是什么原因| 吃杏仁有什么好处| 喉咙有白痰是什么原因| 怀孕六个月出血是什么原因| bgb是什么意思| 罹患是什么意思| 藠头是什么菜| 一九三七年属什么生肖| 城镇户口是什么意思| 化验血常规能查出什么| 心悸心慌焦虑吃什么药能缓解| 水头是什么意思| 放疗起什么作用| 病史是什么意思| 04年出生属什么| 36岁属什么生肖| 夏天防中暑备什么药| 十月二十七是什么星座| lomo卡是什么| 头晕喝什么饮料| 分期是什么意思| 尿粘液丝高是什么原因| 喝小分子肽有什么好处| 神经纤维瘤挂什么科| 吃饭掉筷子有什么预兆| 为什么女人阴唇会变大| 百度Jump to content

小猪短租白皮书:为排解孤独 近半职场人独自出行选择短租

Page semi-protected
From Wikipedia, the free encyclopedia
(Redirected from Cube (arithmetic))
百度 华为公司希望许可SirinLabs公司旗下的SIRIN操作系统,并与谷歌的安卓系统共同运行区块链应用程序。

y = x3 for values of 1 ≤ x ≤ 25.

In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number n is denoted n3, using a superscript 3,[a] for example 23 = 8. The cube operation can also be defined for any other mathematical expression, for example (x + 1)3.

The cube is also the number multiplied by its square:

n3 = n × n2 = n × n × n.

The cube function is the function x ? x3 (often denoted y = x3) that maps a number to its cube. It is an odd function, as

(?n)3 = ?(n3).

The volume of a geometric cube is the cube of its side length, giving rise to the name. The inverse operation that consists of finding a number whose cube is n is called extracting the cube root of n. It determines the side of the cube of a given volume. It is also n raised to the one-third power.

The graph of the cube function is known as the cubic parabola. Because the cube function is an odd function, this curve has a center of symmetry at the origin, but no axis of symmetry.

In integers

A cube number, or a perfect cube, or sometimes just a cube, is a number which is the cube of an integer. The non-negative perfect cubes up to 603 are (sequence A000578 in the OEIS):

03 = 0
13 = 1 113 = 1331 213 = 9261 313 = 29,791 413 = 68,921 513 = 132,651
23 = 8 123 = 1728 223 = 10,648 323 = 32,768 423 = 74,088 523 = 140,608
33 = 27 133 = 2197 233 = 12,167 333 = 35,937 433 = 79,507 533 = 148,877
43 = 64 143 = 2744 243 = 13,824 343 = 39,304 443 = 85,184 543 = 157,464
53 = 125 153 = 3375 253 = 15,625 353 = 42,875 453 = 91,125 553 = 166,375
63 = 216 163 = 4096 263 = 17,576 363 = 46,656 463 = 97,336 563 = 175,616
73 = 343 173 = 4913 273 = 19,683 373 = 50,653 473 = 103,823 573 = 185,193
83 = 512 183 = 5832 283 = 21,952 383 = 54,872 483 = 110,592 583 = 195,112
93 = 729 193 = 6859 293 = 24,389 393 = 59,319 493 = 117,649 593 = 205,379
103 = 1000 203 = 8000 303 = 27,000 403 = 64,000 503 = 125,000 603 = 216,000

Geometrically speaking, a positive integer m is a perfect cube if and only if one can arrange m solid unit cubes into a larger, solid cube. For example, 27 small cubes can be arranged into one larger one with the appearance of a Rubik's Cube, since 3 × 3 × 3 = 27.

The difference between the cubes of consecutive integers can be expressed as follows:

n3 ? (n ? 1)3 = 3(n ? 1)n + 1.

or

(n + 1)3 ? n3 = 3(n + 1)n + 1.

There is no minimum perfect cube, since the cube of a negative integer is negative. For example, (?4) × (?4) × (?4) = ?64.

Base ten

Unlike perfect squares, perfect cubes do not have a small number of possibilities for the last two digits. Except for cubes divisible by 5, where only 25, 75 and 00 can be the last two digits, any pair of digits with the last digit odd can occur as the last digits of a perfect cube. With even cubes, there is considerable restriction, for only 00, o2, e4, o6 and e8 can be the last two digits of a perfect cube (where o stands for any odd digit and e for any even digit). Some cube numbers are also square numbers; for example, 64 is a square number (8 × 8) and a cube number (4 × 4 × 4). This happens if and only if the number is a perfect sixth power (in this case 26).

The last digits of each 3rd power are:

0 1 8 7 4 5 6 3 2 9

It is, however, easy to show that most numbers are not perfect cubes because all perfect cubes must have digital root 1, 8 or 9. That is their values modulo 9 may be only 0, 1, and 8. Moreover, the digital root of any number's cube can be determined by the remainder the number gives when divided by 3:

  • If the number x is divisible by 3, its cube has digital root 9; that is,
  • If it has a remainder of 1 when divided by 3, its cube has digital root 1; that is,
  • If it has a remainder of 2 when divided by 3, its cube has digital root 8; that is,

Sums of two cubes

Sums of three cubes

It is conjectured that every integer (positive or negative) not congruent to ±4 modulo 9 can be written as a sum of three (positive or negative) cubes with infinitely many ways.[1] For example, . Integers congruent to ±4 modulo 9 are excluded because they cannot be written as the sum of three cubes.

The smallest such integer for which such a sum is not known is 114. In September 2019, the previous smallest such integer with no known 3-cube sum, 42, was found to satisfy this equation:[2]

One solution to is given in the table below for n ≤ 78, and n not congruent to 4 or 5 modulo 9. The selected solution is the one that is primitive (gcd(x, y, z) = 1), is not of the form or (since they are infinite families of solutions), satisfies 0 ≤ |x| ≤ |y| ≤ |z|, and has minimal values for |z| and |y| (tested in this order).[3][4][5]

Only primitive solutions are selected since the non-primitive ones can be trivially deduced from solutions for a smaller value of n. For example, for n = 24, the solution results from the solution by multiplying everything by Therefore, this is another solution that is selected. Similarly, for n = 48, the solution (x, y, z) = (?2, ?2, 4) is excluded, and this is the solution (x, y, z) = (?23, ?26, 31) that is selected.


Fermat's Last Theorem for cubes

The equation x3 + y3 = z3 has no non-trivial (i.e. xyz ≠ 0) solutions in integers. In fact, it has none in Eisenstein integers.[6]

Both of these statements are also true for the equation[7] x3 + y3 = 3z3.

Sum of first n cubes

The sum of the first n cubes is the nth triangle number squared:

Visual proof that 13 + 23 + 33 + 43 + 53 = (1 + 2 + 3 + 4 + 5)2.

Proofs. Charles Wheatstone (1854) gives a particularly simple derivation, by expanding each cube in the sum into a set of consecutive odd numbers. He begins by giving the identity

That identity is related to triangular numbers in the following way:

and thus the summands forming start off just after those forming all previous values up to . Applying this property, along with another well-known identity:

we obtain the following derivation:

Visual demonstration that the square of a triangular number equals a sum of cubes.

In the more recent mathematical literature, Stein (1971) uses the rectangle-counting interpretation of these numbers to form a geometric proof of the identity (see also Benjamin, Quinn & Wurtz 2006); he observes that it may also be proved easily (but uninformatively) by induction, and states that Toeplitz (1963) provides "an interesting old Arabic proof". Kanim (2004) provides a purely visual proof, Benjamin & Orrison (2002) provide two additional proofs, and Nelsen (1993) gives seven geometric proofs.

For example, the sum of the first 5 cubes is the square of the 5th triangular number,

A similar result can be given for the sum of the first y odd cubes,

but x, y must satisfy the negative Pell equation x2 ? 2y2 = ?1. For example, for y = 5 and 29, then,

and so on. Also, every even perfect number, except the lowest, is the sum of the first 2?p?1/2?
odd cubes (p = 3, 5, 7, ...):

Sum of cubes of numbers in arithmetic progression

One interpretation of Plato's number, 33 + 43 + 53 = 63

There are examples of cubes of numbers in arithmetic progression whose sum is a cube:

with the first one sometimes identified as the mysterious Plato's number. The formula F for finding the sum of n cubes of numbers in arithmetic progression with common difference d and initial cube a3,

is given by

A parametric solution to

is known for the special case of d = 1, or consecutive cubes, as found by Pagliani in 1829.[8]

Cubes as sums of successive odd integers

In the sequence of odd integers 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, ..., the first one is a cube (1 = 13); the sum of the next two is the next cube (3 + 5 = 23); the sum of the next three is the next cube (7 + 9 + 11 = 33); and so forth.

Waring's problem for cubes

Every positive integer can be written as the sum of nine (or fewer) positive cubes. This upper limit of nine cubes cannot be reduced because, for example, 23 cannot be written as the sum of fewer than nine positive cubes:

23 = 23 + 23 + 13 + 13 + 13 + 13 + 13 + 13 + 13.

In rational numbers

Every positive rational number is the sum of three positive rational cubes,[9] and there are rationals that are not the sum of two rational cubes.[10]

In real numbers, other fields, and rings

y = x3 plotted on a Cartesian plane

In real numbers, the cube function preserves the order: larger numbers have larger cubes. In other words, cubes (strictly) monotonically increase. Also, its codomain is the entire real line: the function x ? x3 : RR is a surjection (takes all possible values). Only three numbers are equal to their own cubes: ?1, 0, and 1. If ?1 < x < 0 or 1 < x, then x3 > x. If x < ?1 or 0 < x < 1, then x3 < x. All aforementioned properties pertain also to any higher odd power (x5, x7, ...) of real numbers. Equalities and inequalities are also true in any ordered ring.

Volumes of similar Euclidean solids are related as cubes of their linear sizes.

In complex numbers, the cube of a purely imaginary number is also purely imaginary. For example, i3 = ?i.

The derivative of x3 equals 3x2.

Cubes occasionally have the surjective property in other fields, such as in Fp for such prime p that p ≠ 1 (mod 3),[11] but not necessarily: see the counterexample with rationals above. Also in F7 only three elements 0, ±1 are perfect cubes, of seven total. ?1, 0, and 1 are perfect cubes anywhere and the only elements of a field equal to their own cubes: x3 ? x = x(x ? 1)(x + 1).

History

Determination of the cubes of large numbers was very common in many ancient civilizations. Mesopotamian mathematicians created cuneiform tablets with tables for calculating cubes and cube roots by the Old Babylonian period (20th to 16th centuries BC).[12][13] Cubic equations were known to the ancient Greek mathematician Diophantus.[14] Hero of Alexandria devised a method for calculating cube roots in the 1st century CE.[15] Methods for solving cubic equations and extracting cube roots appear in The Nine Chapters on the Mathematical Art, a Chinese mathematical text compiled around the 2nd century BCE and commented on by Liu Hui in the 3rd century CE.[16]

See also

Notes

  1. ^ The Unicode superscript character 3 is also available for typesetting: n3.

References

  1. ^ Huisman, Sander G. (27 Apr 2016). "Newer sums of three cubes". arXiv:1604.07746 [math.NT].
  2. ^ Booker, Andrew R.; Sutherland, Andrew V. (2021). "On a question of Mordell". Proceedings of the National Academy of Sciences. 118 (11). arXiv:2007.01209. Bibcode:2021PNAS..11822377B. doi:10.1073/pnas.2022377118. PMC 7980389. PMID 33692126.
  3. ^ Sequences A060465, A060466 and A060467 in OEIS
  4. ^ Threecubes
  5. ^ n=x^3+y^3+z^3
  6. ^ Hardy & Wright, Thm. 227
  7. ^ Hardy & Wright, Thm. 232
  8. ^ Bennett, Michael A.; Patel, Vandita; Siksek, Samir (2017), "Perfect powers that are sums of consecutive cubes", Mathematika, 63 (1): 230–249, arXiv:1603.08901, doi:10.1112/S0025579316000231, MR 3610012
  9. ^ Hardy & Wright, Thm. 234
  10. ^ Hardy & Wright, Thm. 233
  11. ^ The multiplicative group of Fp is cyclic of order p ? 1, and if it is not divisible by 3, then cubes define a group automorphism.
  12. ^ Cooke, Roger (8 November 2012). The History of Mathematics. John Wiley & Sons. p. 63. ISBN 978-1-118-46029-0.
  13. ^ Nemet-Nejat, Karen Rhea (1998). Daily Life in Ancient Mesopotamia. Greenwood Publishing Group. p. 306. ISBN 978-0-313-29497-6.
  14. ^ Van der Waerden, Geometry and Algebra of Ancient Civilizations, chapter 4, Zurich 1983 ISBN 0-387-12159-5
  15. ^ Smyly, J. Gilbart (1920). "Heron's Formula for Cube Root". Hermathena. 19 (42). Trinity College Dublin: 64–67. JSTOR 23037103.
  16. ^ Crossley, John; W.-C. Lun, Anthony (1999). The Nine Chapters on the Mathematical Art: Companion and Commentary. Oxford University Press. pp. 176, 213. ISBN 978-0-19-853936-0.

Sources

和氏璧是什么玉 痣挂什么科 二月花是什么花 梦见长豆角是什么意思 心电图逆钟向转位是什么意思
什么药通便最快 梅艳芳什么病 志司是什么意思 工科和理科有什么区别 腺样体增生是什么意思
熙熙攘攘什么意思 妙曼是什么意思 血清铁蛋白高说明什么 绿豆与什么食物相克 花椒吃多了对身体有什么影响
药品经营与管理学什么 9.3号是什么星座 三和大神什么意思 梦见狗死了是什么预兆 心服口服的意思是什么
大便不通吃什么药hcv9jop4ns5r.cn 龙舌兰是什么酒hcv9jop1ns5r.cn 不安腿综合征吃什么药hcv7jop6ns6r.cn 蓝得什么hcv7jop7ns0r.cn 口腔溃疡为什么那么痛hcv8jop5ns7r.cn
肩周炎挂什么科hcv9jop7ns0r.cn 单立人加吉念什么hcv8jop0ns2r.cn 骨古头坏死吃什么药hcv9jop1ns0r.cn 口蜜腹剑是什么意思hcv8jop3ns9r.cn 软装是什么hcv7jop5ns0r.cn
肾阳虚有什么症状男性hcv9jop1ns6r.cn 白羊座男生喜欢什么样的女生hcv8jop2ns4r.cn 皮肤黑穿什么颜色的衣服显白hcv9jop5ns1r.cn 月经期间适合吃什么hcv9jop6ns7r.cn 脚指麻木是什么病先兆hcv8jop2ns8r.cn
肛周脓肿什么症状hcv8jop4ns7r.cn 脑梗是什么症状hcv9jop0ns7r.cn 肝火旺盛是什么原因引起的hcv9jop7ns1r.cn 辣木籽是什么bjcbxg.com 咬到舌头是什么预兆hcv9jop4ns0r.cn
百度